
한국지능시스템학회 논문지 2009, Vol. 19, No. 3, pp. 432-436

432

접수일자 : 2009년 4월 29일

완료일자 : 2009년 6월 5일

This research was financially supported by Hansung

University in the year of 2008.

Simple Bacteria Cooperative Optimization with Rank Replacement

Sung Hoon Jung

Department of Information and Communication Engineering, Hansung University

Abstract

We have developed a new optimization algorithm termed simple bacteria cooperative optimization (sBCO) based on

bacteria behavior patterns [1]. In [1], we have introduced the algorithm with basic operations and showed its

feasibility with some function optimization problems. Since the sBCO was the first version with only basic operations,

its performance was not so good. In this paper, we adopt a new operation, rank replacement, to the sBCO for

improving its performance and compare its results to those of the simple genetic algorithm (sGA) which has been

well known and widely used as an optimization algorithm. It was found from the experiments with four function

optimization problems that the sBCO with rank replacement was superior to the sGA. This shows that our algorithm

can be a good optimization algorithm.

Key Words : Optimization, Bacteria Cooperative Optimization, Bacteria foraging, Bacteria chemotaxis

1. Introduction

Recently bio-inspired algorithms such as ant colony

optimization, artificial immune system, and particle

swarm optimization have been introduced and widely

used for engineering applications [2-6]. These algo-

rithms are based on the naturally optimized properties

of natural organisms that have been evolved for few

millenniums. In order to revise another bio-inspired al-

gorithm, we focused on an Escherichia coli (often ab-

breviated to E. coli).

The E. coli, a kind of bacteria, usually live in a fluid

(water) and swim by rotating several helical filaments

called flagella. Their swimming consists of runs and

tumbles [7,8]. If E. coli sense zero or negative gradients

of attractant chemical molecules in regular temporal

base on average, they tumble and new direction is ran-

domly chosen. Otherwise, they run straight. From this

biased random walk, E. coli can trace attractant chem-

ical molecules for foraging. We have analyzed the for-

aging behaviors of E. coli and modeled their behavioral

properties into behavior rules and decision rules in pre-

vious study [9]. Based on these rules, we have proposed

a novel optimization algorithm termed simple bacteria

cooperative optimization (sBCO) in [1].

In [1], our sBCO algorithm showed some possibility,

but we could not be sure whether it could be a new

good optimization algorithm because it had only basic

operations and we didn't compare to the other, well

known optimization algorithms. The sBCO consists of

only three basic operations such as moving, sensing,

decision with which artificial E. colis (AEs) find global

optima. These three operations are not enough to show

good performances because three operations can make

AEs just iteratively search their neighbors step by step

without additional operations for exploration. In sGA,

the crossover operation can be viewed as an ex-

ploitation operation because it uses informations pre-

viously found and the mutation operation can be re-

garded as an exploration operation because it explores

new search areas.

With this observation in mind, we adopt a new oper-

ation, rank replacement, in order to improve the per-

formance of sBCO. In rank replacement, some percents

of bad AEs are replaced with newly generated AEs.

With rank replacement, sBCO can show some explora-

tion effects similar to the mutation in sGA. This rank

replacement can help the sBCO find a new area and al-

so help the sBCO escape a local optimum area.

Escaping a local optimum area is very important in

most optimization algorithms because falling local opti-

mum area makes optimization algorithms have very

poor performances.

In order to measure the effects of rank replacement,

we experimented our algorithm with four function opti-

mization problems. Experimental results showed that

the rank replacement could make our algorithm be a

good optimization algorithm compared to the sGA. Our

algorithm showed better performances about 40 times to

about 2000 times than the sGA.

This paper is organized as follows. Section 2 de-

scribes the simple bacteria cooperative optimization with

rank replacement. We deal with the experiments with

four function optimization problems and discuss their

results compared to those of sGA in section 3. We con-

clude this paper in section 4.

Simple Bacteria Cooperative Optimization with Rank Replacement

433

Algorithm 1 Simple Bacteria Cooperative Optimization with Rank Replacement

//  : discrete time //

//  : the run count //

//  : the minimum number of runs to decide the actions of AE //

//  : the maximum number of runs to go straight without tumble //

//  , : the number of units for measuring current density of attractant molecules //

//  : the number of units for measuring previous density of attractant molecules //

// , : the current density of attractant chemical molecules //

//  : the previous density of attractant chemical molecules //

//  : artificial E. Colis (AEs) at time  //
1   

2 initialize 

3 make AEs at random positions uniformly distributed within operating ranges

4 set initial directions of all AEs to random

5 set initial modes of all AEs to run

6 set , , and  of all AEs to zero

7 sense and store the amount of attractant chemical molecules at current position

8 while (not termination-condition)

9 do

10   

11 move 

12 move each AE for one unit of playground to its direction

13 increase  of each AE

14 sense 

15 sense and store the amount of attractant chemical molecules at current position

16 calculate  and  ▷ decision rule (D1)

17 decide 

18 if  mod    then ▷ behavior rule (B1)

19 if  >  then ▷ decision rule (D2)

20 set mode to run

21 else

22 set mode to tumble

23 end if

24 end if

25 if  =  then ▷ behavior rule (B2)

26 set mode to tumble

27 end if

28 if tumble mode then

29 set direction to random direction except for current direction and opposite direction

30 set run mode

31 set   

32 end if

33 replace 

34 sort  with the amount of attractant chemical molecules on the current position

35 change  percents of bad AE to newly initialized AE

36 end

2. Simple Bacteria Cooperative

Optimization with Rank Replacement

Our simple bacteria cooperative optimization (sBCO)

algorithm is based on the behavioral patterns of E.

colis. E. colis can do run or tumble according to the

gradients of attractant chemical molecules. They decide

their action every predefined movement using the den-

sity changes of attractant chemical molecules [9]. In or-

der to make an optimization algorithm from these be-

havioral patterns, we have first made two kinds of

rules, behavior rules and decision rules with artificial E.

colis (AEs) on the discretized playground [1]. In the

playground, AEs can move one unit to eight directions

for a time step. We call the length of moving without

turn of their direction the run count. Under this envi-

ronment, the behavior rules are given:

(B1) AEs decide their actions for run or tumble every

한국지능시스템학회 논문지 2009, Vol. 19, No. 3

434

   
    ≤≤

  
 

 
 





 
  

 
 




 
 

 
 




 
 

 






 

 
 

 



 
 

 
 




 
  

 



 ≤≤ 

  
  




 

 
 




 ≤≤and  and  
       

sin sin 
 ≤≤

 runs,

(B2) If their run counts become to  , then

AEs must do tumble.

When AEs decide their actions, they compare the

current density of attractant chemical molecules to pre-

vious density of those. If current density is larger than

previous one, then they keep the run action until the

run counts become to . If the run count becomes to

, then they must do tumble. This second behavior

rule somewhat helps sBCO not to fall local optimum. In

order to decide their actions, AEs must know the cur-

rent and previous densities of attractant chemical

molecules. For this, decision rules are necessary. The

decision rules are given:

(D1) AEs calculate the current density of attractant

chemical molecules using the average values of those

on  steps and the previous density using the average

values of those on  steps on the discretized

playground.

(D2) If the current density of attractant chemical mole-

cules is greater than the previous density, then the AE

decides its action to run, otherwise, tumble.

Based on these behavior and decision rules, we de-

vised a sBCO algorithm. You can find more detailed

description about sBCO in [1]. The sBCO showed some

possibility, but we could not be sure whether it could

be a new good optimization algorithm because it had

only simple basic operations and showed relatively poor

performances.

As a new operation, we add rank replacement to the

sBCO algorithm as shown in Algorithm 1. We call this

algorithm simple bacteria optimization with rank re-

placement (sBCORR). Rank replacement is to replace

bad AEs into newly generated AEs in order to search

new areas and to escape local optima. This rank re-

placement increases the performances of sBCORR.

In the algorithm, the amount of attractant chemical

molecules on the playground is given by an opti-

mization function. Therefore, AEs move to optimum

areas and eventually find the global optimum. In

sBCORR, AEs are first initialized and then iteratively

optimized by four main operations such as move  ,
sense  , decide  , and replace  until one of
AEs reaches to global optimum. If some AEs reach to

the boundary of playground, then they randomly turn

and go. It can also be viewed that the replace  op-
eration is to mimic Darwinian natural selection.

Table 1. Parameters of function 

 1 2 3 4 5 6 7 8 9

 1.00 0.99 0.98 0.99 0.98 0.98 0.99 0.99 0.99

 0 0 0 0 0 10 10 10 10

 3 3 3 3 3 3 3 3 3

 0 -10 -20 10 20 20 10 0 -10

 3 3 3 3 3 3 3 3 3

 10 11 12 13 14 15 16 17 18

 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99

 10 20 20 20 20 20 10 10 10

 3 3 3 3 3 3 3 3 3

 -20 20 10 0 -10 -20 20 10 0

 3 3 3 3 3 3 3 3 3

 19 20 21 22 23 24 25 26 27

 0.99 0.98 0.98 0.99 0.99 0.99 0.98 0.04 0.04

 10 10 20 20 20 20 20 0 0

 3 3 3 3 3 3 3 30 30

 -10 -20 20 10 0 -10 -20 0 0

 3 3 3 3 3 3 3 30 30

3. Experimental Results

Our sBCORR was tested on four function opti-

mization problems as shown in Equation 1.

Figure 1 shows the input and output relations of four

functions. Function  is a simple and unimodal func-

tion, which has its maximum at     . Function 

is a relatively simple, but multimodal function, which

has its maximum at  , and  . Function 

has many local optimum distributed broadly on the

playground whose values are nearly the same as those

of the global optimum. As a very difficult function for

optimization, function , sometimes called Mexican hat,

has a lot of local optimum around the global optimum

located at     .

Simple Bacteria Cooperative Optimization with Rank Replacement

435

Figure 1. Experimental functions:  (simple), 

(peaks),  (custom),  (Mexican hat)

The  and  axes of playground are discretized by

   bits, respectively. Thus, the total search

space is . We set the  and 

to   and   respectively because it was re-

vealed that the values were proper in our previous work

[9]. We tested our algorithm with various  percents

and various number of AEs. If one of AE reaches to

global optimum, then its execution is stopped and the

discrete time  is recorded.

In order to compare our sBCORR algorithm, a simple

genetic algorithm (sGA) [10] was also tested under the

same environments to our sBCORR algorithm. We set

the crossover probability of sGA to  and the muta-

tion probability of sGA to .

Table 2 shows the results of sGA and sBCORR. All

results are average values of 10 runs with different

random number seeds. In the results, we display only

integer part of average values for simplicity and under-

line the best results of sBCORR. In order to show the

effect of individuals, we used 10, 50, 100 number of

AEs for sBCORR and 10, 50, 100 number of chromo-

somes for sGA. As shown in the results, our sBCORR

algorithm is superior than the sGA about 40 times to

about 2000 times.

We can also observe the other points from the

results. First, sBCORR showed relatively stable per-

formances according to the number AEs and replace-

ment percents of bad AEs. This imply that sBCORR is

a more reliable and robust method not to be perturbed

its performances according to its parameters than the

sGA. Second, about 50 percents of bad AEs showed

good performances in most functions. This means that

we don't need another method to select proper replace-

ment percents.

4. Conclusion

In this paper, we proposed a bacteria cooperative op-

timization algorithm with rank replacement. From ex-

periments with four function optimization problems it

was found that our sBCO algorithm with rank replace-

ment was superior than a simple genetic algorithm that

has been well known and widely used to date. This im-

plied that our sBCO algorithm with rank replacement

could be a new good framework for optimization.

Generally bacteria secrete quorum sensing molecules for

detecting their quorum from the density of them and

use it for communicating each other and detecting envi-

ronmental changes. From this, they can more effectively

do foraging.

In order to increase the performances of our algo-

rithm, we will incorporate this quorum sensing mecha-

nism into our algorithm as a further work. Also, we

will introduce breeding of AEs like the sGA. This in-

corporation will make our algorithm be a truly coopera-

tive algorithm.

한국지능시스템학회 논문지 2009, Vol. 19, No. 3

436

fn no. sGA
Replacement percents of bad AEs 

10 20 30 40 50 60 70 80 90



10 295595 582 506 506 376 335 335 427 298 476

50 29553 387 190 220 286 205 194 222 195 245

100 10276 272 242 207 186 179 180 157 147 151



10 97777 709 655 655 537 419 419 555 547 641

50 174742 454 340 325 258 272 275 222 252 310

100 308776 425 346 291 248 205 195 172 202 196



10 129226 1899 883 883 721 661 661 524 662 606

50 25082 466 360 344 442 328 287 291 249 316

100 14642 323 398 327 291 222 219 231 272 236



10 387265 29598 15167 15167 14829 8464 8464 10262 23170 47529

50 53437 3902 2178 3652 4093 1769 3254 6320 5037 4341

100 40676 1034 2150 1283 962 1364 1727 1734 2513 2667

Table 2. Experimental results

References

[1] S. H. Jung and T.-G. Kim, ``A Novel

Optimization Algorithm Inspired by Bacteria

Behavior Patterns,'' Journal of Korean Institute

of Intelligent Systems, vol. 18, pp. 392-400, June

2008.

[2] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm

Intelligence. Morgan Kaufmann, 2001.

[3] M. Dorigo and T. Stutzle, Ant Colony

Optimization. The MIT Press, 2004.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz,

Swarm Intelligence: From Natural to Artificial

Systems. Oxford University Press, 1999.

[5] M. Clerc, Particle Swarm Optimization.

Publishing Company, 2006.

[6] L. N. de Castro and J. Timmis, Artificial Immune

Systems: A New Computational Intelligence

Approach. Oxford University Press, 2002.

[7] M. Kim, S. Baek, S. H. Jung, and K.-H. Cho,

``Dynamical characteristics of bacteria clustering

by self-generated attractants,'' Computational

Biology and Chemistry, vol. 31, pp. 328-334, Oct.

2007.

[8] H. C. Berg and D. A. Brown, ``Chemotaxis in

escheichia coli analysed by three-dimensional

tracking,'' Nature, vol. 239, pp. 500-504, 1972.

[9] T.-H. Kim, S. H. Jung, and K.-H. Cho,

``Investigations into the design principles in the

chemotactic behavior of Escherichia coli,''

BioSystems, vol. 91, pp. 171-182, Jan. 2008.

[10] M. Srinivas and L. M. Patnaik, ``Genetic

Algorithms: A Survey,'' IEEE Computer

Magazine, pp. 17-26, June 1994.

저 자 소 개

정성훈(Sung Hoon Jung)

1991년 : 한국과학기술원 전기및전자공학과

(공학석사)

1995년 : 한국과학기술원 전기및전자공학과

(공학박사)

1996년 : 한국과학기술원 전기및전자공학과

위촉연구원

1996년∼현재:한성대학교 정보통신공학과

 조교수,부교수,정교수

관심분야 : 진화연산, 신경망, 퍼지, 시스템생물학, 생물지능

E-mail : shjung@hansung.ac.kr

