• 제목/요약/키워드: Optimization Technique

검색결과 2,671건 처리시간 0.038초

드릴가공 최적화에 대한 연구(1): 드릴가공시 가공변수의 최적화 (A Study on the Optimization of Drilling Operations(1): Optimization of Machining Variables for Drilling Operations)

  • 유회진
    • 산업공학
    • /
    • 제12권2호
    • /
    • pp.337-345
    • /
    • 1999
  • This paper presents the optimization of a drilling operation subject to machining constraints such as power, torque, thrust, speed and feed rate. The optimization is meant to minimize the machining time required to produce a hole. For the first time, the effects of a pilot hole are included in the formulation of the machining constraints. The optimization problem is solved by using the geometric programming technique. The dual problem is simplified based on the characteristics of the problem, and the effects of machining constraints on the machining variables are identified.

  • PDF

DEAS를 이용한 변압기 코아의 최적설계 (Optimal Design of a Transformer Core Using DEAS)

  • 김태규;김종욱
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1055-1063
    • /
    • 2007
  • This paper introduces an optimal design technique for a 250-watt isolation transformer using an optimization method, dynamic encoding algorithm for searches (DEAS). Although the optimal design technique for transformers dates back to 1970s and various optimization methods have been developed so far, literature concerning global optimization for transformer core design is rarely found against its importance. In this paper, core configuration of the isolation transformer whose performance is computed by complex mathematical steps is optimized with DEAS. The optimization result confirms that DEAS can be successfully employed to transformer core design for various performance specifications only by adjusting weight factors in cost function.

불확실성 요소들을 고려한 3차원 날개의 공력 최적설계 (A 3-D Wing Aerodynamic Design Optimization Considering Uncertainty Effects)

  • 안중기;김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.9-16
    • /
    • 2004
  • This study presents results of aerodynamic wing optimization under uncertainties. To consider uncertainties, an alternative strategy for reliability-based design optimization(RBDO) is developed. The strategy utilizes a single loop algorithm and a sequential approximation optimization(SAO) technique. The SAO strategy relies on the trust region-SQP framework which validates approximated functions at every iteration. Further improvement in computational efficiency is achieved by applying the same sensitivity of limit state functions in the reliability analysis and in the equivalent deterministic constraint calculation. The framework is examined by solving an analytical test problem to show that the proposed framework has the computational efficiency over existing methods. The proposed strategy enables exploiting the RBDO technique in aerodynamic design. For the aerodynamic wing design problem, the solution converges to the reliable point satisfying the probabilistic constraints.

  • PDF

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권3호
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

초점 연산자의 최적화를 통한 세포영상의 삼차원 형상 복원 알고리즘 (Shape From Focus Algorithm with Optimization of Focus Measure for Cell Image)

  • 이익현;최태선
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권3호
    • /
    • pp.8-13
    • /
    • 2010
  • Shape from focus (SFF) 방법은 이미지의 초점화된 영상을 이용하여 삼차원의 형상을 복원하는 방법이다. 그동안 많은 SFF 방법들이 연구되어 왔지만 노이즈에 대한 문제점과 영상특성으로 인한 최적화되지 못한 문제점이 남아있었다. 그러므로 노이즈를 제거하기 위한 필터링과 최적화 알고리즘을 제안한다. 성능 평가를 위하여 통계적인 판별기준인 평균제곱근오차 (RMSE)와 상관관계 (correlation) 수치를 이용한다.

  • PDF

고유 진동수를 고러한 구조물의 위상 최적설계 (Structural Topology Optimization for A Natural Frequency)

  • 임오강;이진석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.110-120
    • /
    • 1999
  • Topology optimization is used for determining the best layout of structural components to achieve predetermined performance goals. In the present study, we consider that the objective function is to maximize the natural frequency of the structure for a designated mode and the constraint function is to constrain a total material usage. In this paper, using a topology optimization technique based on the homogenized material and the chessboard prevention strategy, we obtain the optimal layout and the reinforcement of an elastic structure. Several examples are presented to show the ability of the topology optimization technique used in this paper to deal with an optimal layout problem for a free vibration structure.

  • PDF

Multi-Point Aerodynamic Shape Optimization of Rotor Blades Using Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권1호
    • /
    • pp.66-78
    • /
    • 2007
  • A multi-point aerodynamic shape optimization technique has been developed for helicopter rotor blades in hover based on a continuous adjoint method on unstructured meshes. The Euler flow solver and the continuous adjoint sensitivity analysis were formulated on the rotating frame of reference. The 'objective function and the sensitivity were obtained as a weighted sum of the values at each design point. The blade section contour was modified by using the Hicks-Henne shape functions. The mesh movement due to the blade geometry change was achieved by using a spring analogy. In order to handle the repeated evaluation of the design cycle efficiently, the flow and adjoint solvers were parallelized based on a domain decomposition strategy. A solution-adaptive mesh refinement technique was adopted for the accurate capturing of the wake. Applications were made to the aerodynamic shape optimization of the Caradonna-Tung rotor blades and the UH-60 rotor blades in hover.

분자 동역학 방식을 사용한 전역 최적화 기법에 관한 연구 (A Study on the Global Optimization Technique Based upon Molecular Dynamics)

  • 최덕기;김재윤
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1223-1230
    • /
    • 1999
  • This paper addresses a novel optimization technique based on molecular dynamics simulation which has been utilized for physical model simulation at various disciplines. In this study, objective functions are considered to be potential functions, which depict molecular interactions. Comparisons of typical optimization method such as the steepest descent and the present method for several test functions are made. The present method shows applicability and stability in finding a global optimum.

King-Moe Type V 형태의 척추측만증 유한 요소 모델에서 최적화 기법을 적용한 교정 방법 (Correction of King-Moe Type V Scoliosis with Optimization Method in a FE Model)

  • 김영은;손창규;박경열;정지호;최형연
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.701-704
    • /
    • 2003
  • Scoliosis is a complex musculoskeletal dieses requiring 3-D treatment with surgical instrumentation. Conventional corrective surgery for scoliosis was done based on empirical knowledge without information of the optimum position and operative procedure. Frequently, post operative change of rib hump increase and shoulder level imbalance caused serious problems in the view of cosmetics. To investigate the effect of correction surgery, a reconstructed 3-D finite element model for King-Moe type V was developed. Vertebrae, clavicle and other bony element were represented using rigid bodies. Kinematic joints and nonlinear bar elements used to represent the intervertebral disc and ligaments according to reported experimental data. With this model, optimization technique was also applied in order to define the optimal magnitudes of correction. The optimization procedure corrected the scoliotic deformities by reducing the objective function by more than 94%. with an associated reduction of the scoliotic descriptors mainly on the frontal thoracic curve.

  • PDF

Optimal Shape Design of Dielectric Micro Lens Using FDTD and Topology Optimization

  • Chung, Young-Seek;Lee, Byung-Je;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.286-293
    • /
    • 2009
  • In this paper, we present an optimal shape design method for a dielectric microlens which is used to focus an incoming infrared plane wave in wideband, by exploiting the finite difference time domain (FDTD) technique and the topology optimization technique. Topology optimization is a scheme to search an optimal shape by adjusting the material properties, which are design variables, within the design space. And by introducing the adjoint variable method, we can effectively calculate a derivative of the objective function with respect to the design variable. To verify the proposed method, a shape design problem of a dielectric microlens is tested when illuminated by a transverse electric (TE)-polarized infrared plane wave. In this problem, the design variable is the dielectric constant within the design space of a dielectric microlens. The design objective is to maximally focus the incoming magnetic field at a specific point in wideband.