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ABSTRACT

Some methods have been presented to get optimal formation trajectories in the step
of configuration or reconfiguration, which subject to constraints of collision avoid-
ance and final configuration. In this study, a method for optimal formation trajectory-
planning is introduced in view of fuel/time minimization using parameter optimiza-
tion technique which has not been applied to optimal trajectory-planning for satellite
formation flying. New constraints of nonlinear equality are derived for final config-
uration and constraints of nonlinear inequality are used for collision avoidance. The
final configuration constraints are that three or more satellites should be placed in an
equilateral polygon of the circular horizontal plane orbit. Several examples are given
to get optimal trajectories based on the parameter optimization problem which sub-
jects to constraints of collision avoidance and final configuration. They show that the
introduced method for trajectory-planning is well suited to trajectory design problems
of formation flying missions.
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1. INTRODUCTION

Satellite formation flying (SFF) is the placing of micro-satellites into nearby orbits to form a
cluster for the same mission. In recent years, it has become a topic of significant interest in the
aerospace engineering. Formation flying system has several benefits compared to the large single
spacecraft system with equivalent missions: low cost for launch and mass production, larger aperture
size, greater launch flexibility, higher system reliability and easier expandibility (Lim et al. 2003).
According to the characteristic of control purpose and design, SFF problem can be categorized into
three phases: determination of initial conditions, satellite formation keeping and satellite formation
configuration or reconfiguration. However, the determination of initial conditions can belong to
satellite formation keeping problem because both problems are concerned with minimization of fuel
consumption to maintain the formation against to the external forces such as the J» gravitational
perturbation and air-drag.
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A critical issue in the satellite formation configuration or reconfiguration is to determine optimal
maneuvers for fuel minimization when the formation needs to be changed. Beard et al. (2000)
derived an open-loop control algorithm of reorienting a formation in free space by minimizing a
cost function which is composed with fuel consumption and fuel equalization. Yang et al. (2002)
modelled and analysed the satellite formation reconfiguration problem of fuel minimization as a
multi-agent optimization problem. Tillerson et al. (2002) used convex optimization techniques to
derive fuel/time optimal control algorithm of formation keeping and formation reconfiguration.

The spatial separation between satellites can be from a few meters to several kilometers for
some SFF missions. It is very critical issue to avoid collisions between spacecrafts as they move
in space under the mission of the configuration or reconfiguration. Many techniques have been de-
veloped for solving the problem of trajectory optimization with collision avoidance in collaborative
systems. Especially the collision avoidance problem has been extensively investigated in the field
of robot motion planning. A method based on potential functions is known to be a very effective
and powerful technique for handling collision avoidance constraints (Gavin et al. 1995). This tech-
nique adds the proximity penalty to the cost function to account for collision avoidance constraints.
Other techniques have been developed for path-planning with collision avoidance constraints such
as randomized algorithms (Barraquand et al. 1997), splines (Singh & Hadaegh 2001) and a mixed-
integer linear programming (Richards et al. 2002). Richards et al. (2002) introduced a method of
finding fuel-optimal trajectories considering collision avoidances and plume impingements based on
a mixed-integer linear programming (MILP) for the satellite formation reconfiguration.

For the configuration strategy, there are some literatures dealing with the final configuration.
Some approaches compute the cost for many sets that are predefined to assign the final states and
then select a set which gives the lowest cost. The problem of trajectory planning and configuration
selection is decoupled in these approaches (Tillerson et al. 2002, Wang & Hadaegh 1998). MILP
approach includes configuration selection in trajectory optimization problem. So selection and as-
signment are performed within MILP to achieve the subset of final states which give the lowest cost
and are known as a global configuration (Richards et al. 2002).

This paper is concerned with optimal trajectory-planning aspects of fuel/time minimization. The
optimal trajectory-planning problem is solved using a parameter optimization technique based on a
sequential quadratic programming (SQP). Collision avoidance and final configuration constraints
are considered in the optimal trajectory-planning. The final configuration constraints are that 3 or
4 satellites should make an equilateral polygon in the circular horizontal plane orbit (Sabol et al.
2001) as TechSat-21 mission. These constraints are applied to get the optimal trajectory-planning of
satellite formation flying in a different way from the aforementioned configuration strategies.

2. PROBLEM FORMULATION

2.1 Relative Dynamics

A rotating local-vertical-local-horizontal (ILVL.H) frame is used to describe the relative motion
with respect to the reference satellite. The x-axis points in the radial direction,'and the z-axis is per-
pendicular to the orbital plane and points in the direction of the angular momentum vector. Finally,
the y-axis points in the along-track direction. In general, Clohessy-Wiltshire equations (Clohessy &
Wiltshire 1960) based on LVLH frame are used to describe the relative motion and control strategies
between satellites, which are known as Hill’s equations. Hill’s equations are a set of linearized equa-
tions that describe the relative motion between satellites, which were used to describe a relative mo-
tion of rendezvous mechanics in the past and a satéllite formation flying these days. Hill’s equations
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are derived under the assumption that the reference orbit is circular, the Earth is spherically sym-
metric, and the target satellite is very close to the reference orbit. From these assumptions, external
perturbations such as the J; gravitation and nonlinear terms appeared in the relative motion can be
ignored in Hill’s equations. So Hill’s equations can not accurately describe the relative motion under
gravitational perturbation. However this study uses the Hill’s equations as dynamic model to derive
the constraints of final configuration. For the convenience of parameter optimization problem, we
introduce a new time variable(r = wt) using time(t) and mean motion(w). Since dz /dt = w{dz/dr)
and d%z/dt?* = w?(d?z/dr?), the Hill’s equations based on the new time variable can be rewritten
as (Lim et al. 2003)

&—20 -3z =F,/w =u,
§+2& = Fyjw? = u,
P4+z2=F,Ju®=u, N

where,

& =dz/dr, y=dy/dr, z=dz/dr
& =d?z/dr?, §j=d%y/dr?, 3=d*z/dr?
x = [zyzzy 2" is the state vector, and F = [F, F, F,]T and u = [u; u, u,]7 are the control
input vectors. The terms of the first equation are total, Coriolis and centripetal acceleration from
left to right. Note that the out-of-plane motion is decoupled from the in-plane motion in the Hill’s
equations.

2.2 Basic Parameter Optimization Problem
Trajectory optimization problems basically concern with how to find the control history and
optimal trajectories for fuel/time minimization. It can be formulated to a parameter optimization
problem. There are four general classes of methods for converting a trajectory optimization problem
to a parameter optimization problem according to the unknowns in each class: 1) control parameters,
2) control parameters and some state parameters, 3) control parameters and state parameters, and 4)
state parameters (Hull 1997). The parameter optimization problem in this paper is to find the free
final time and the control history that minimize the cost function. So this problem can be categorized
into the first class, because the free final time is one of the elements of the design parameters. To
formulate a parameter optimization problem, nodes for time are defined according to the equal time
interval as
<N < < <Tp < <Tnv=75. YI€[0,1,2,---N] )

where 7y is final time. And the time interval, [7;, 7;41], can be divided into many sub intervals with
the number of M to estimate control inputs at lots of nodes

Too <Tol < - <7<l <+ <7y <--- <TNM, Vj€[0,1,2,~.--M] 3)

Thus we can have the number (N x M) of nodes and ;4 is equal to 7;. If these are V number of
satellites, we can define control inputs for the pth satellite and the sth component of a state variable
at each node as

Upsij :Ups(Tij): VPE [172"',V]a Vs € [1a2’3] C)]

where p is the pth satellite and s means the component in the LVLH frame. If the subscript j for
any parameter is omitted, the parameter means the value at time 7; (for example, ups; = Upsio =
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ups(Ti0)). The control input vectors and final time should be within specified limits

—Umaz < Upsij < Umax

Tmin < Tf < Tmas (5)

The problem is to find suitable control inputs and final time as to minimize the fuel and time for
the formation configuration or reconfiguration. Thus cost function can be given by

” V 3 N-1 M
J=p (ﬂ) Tr+(1-5) Z {upsi (T41)G+1) — Tig) } (6)

p
tmaz p=1s=1 =0 j=0

where 3 is a weighting factor and 0 < 8 < 1. Tynqe and Upmq, are introduced to keep a balance of
the time term and fuel term in the cost function. They are define as

Ttmaz = Tmaz
vV 3
Utmaz — g E

In this paper, control input vectors will be estimated at 7 = 7; in the parameter optimization
problem and it is assumed that the control inputs by constant thrusters are applied continuously in
the time interval [7(;1)(j4+1) — 7ij-]. Therefore the number of all unknown parameters for control
input is (N + 1) x V x 3. Thus we can define the vector of unknown parameters including control
inputs and final time to convert the trajectory optimization problem to the parameter optimization
problem as

M
Z {Uzna,szaz} )

v = [Uno,uuh'",U11N,U120,U121,‘"aU12N,U130,U131"",U13N,
U210, U211, "~ ", U1 N, U220, U221, * * *, U22 N, U230, U231, "+, U23N,
T
UV10,UV11,"',UVIN,UV20,UV21,"',Uva,UV30,uV31,"',UVSN,Tf]
_ T
= [U1,Y2,V3, ", UN41)xV x3> UN+1)x V x3+1] (®)

Note that v; = wuy19, v2 = w111 and so on. If collision avoidance and final configuration
constraints are neglected, unknown parameters in Eq. (8) are chosen to minimize the cost function,
Eq. (6). Control inputs, ups;;(j 7 0) in Eq. (6), are not estimated from this parameter optimization
problem but they can be calculated by linear interpolation from (upg:, Ups(it+1))-

2.3 Nonlinear Programming

There are two methods for solving trajectory optimization problem, direct and indirect methods.
Indirect methods find a trajectory satisfying the necessary conditions such as the Euler-Lagrange
equations or the Pontrygin’s minimum principle, which can be solved by numerical methods such
as shooting methods, multiple shooting methods and quasi-linearization methods. Direct methods
recursively update the control and trajectory to reduce the value of the cost function while satisfying
the boundary conditions and the terminal constraints. In direct methods, control and state variables
are represented by piecewise polynomials and the discretized control and state variables at each time
are considered as parameters for optimization. Thus direct methods can be converted into parameter
optimization problems which are solved using nonlinear programming techniques. In this paper,



OPTIMAL FORMATION TRAJECTORY-PLANNING 213

SQP method is used to solve the parameter optimization problem, which is considered as one of the
most promising techniques for solving optimization problems with nonlinear constraints (Onwubiko
2000).

The general constrained optimization problem is to minimize a nonlinear function (f(v)) subject
to nonlinear constraints (cp(v)), which can be descirbed as

min{f(v) : ex(v) <0, h€ I, ch(v) =0, h€ E} ®

where I and E are index sets for inequality and equality constraints respectively. Using quadratic
approximation for Lagrangian and linear approximation for constraint functions, Lagrangian for this
problem can be rewritten as (Onwubiko 2000)

L%, M) = f(vi) + VF(ve)Td + %dTVfw L(vi, Ae)d (10)

where subscript k means the kth iteration, and A and d are Lagrange multiplier and feasible descent
direction, respectively. Unkonwn parameters are updated using v = vy, + dj. The feasible descent
direction can be obtained from the following quadratic programming

minimize Vive)Td + %dTvgv L(vg, Ax)d (i
subject Ve (vi)Td = —cf(vy)

where cf denotes the constraints in the active set. The process of updating unknown parameters is
continued until || d ||< ¢, a specified tolerance.

3. CONSTRAINTS FOR FORMATION TRAJECTORY

3.1 Collision Avoidance
Collision avoidance is very critical in the configuration or reconfiguration of SFF system which
consists of many satellites. Constraints of collision avoidances between different satellites are given
in this section, which can be derived easily from a geometry based on the LVLH frame. A satellite
has to be placed at least outside of 3-dimensional sphere whose center is the position of other satellite
at each time step. Let the position vectors at the ith node to be [Zp; Ypi 2ps]T and [2g; Y 2,4:]7 for
the pth and the gth satellite. Then the constraint of collision avoidance between two satellites is
given by
(@pi — 24i)? + (Upi — Ya:)* + (21 — 20)° > Ry (12)

where R, is the radius of 3-dimensional sphere for collision avoidance.
This constraint equation can be extended to the general case with many satellites at 7;; using the
same notation as before.

(@pij = Tqis)” + (Upij — Yais)* + (2pij = 2435)* > Ra, Vp,Vg€[L,2,---,V]; p#q (1)
This equation is add to the parameter optimization problem as constraint of collision avoidance.

3.2 Final Configuration

There are some literatures dealing with the final configuration but most of them put the final
states of satellites as fixed points. Richards et al. (2002) defined many subsets of final states and
performed the assessment for all subsets within the trajectory optimization. And then they selected
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(a) Equilateral triangle {b) Equilateral square

Figure 1. Configuration of satellites in the circular horizontal plane orbit (a: angle measured from y axis, p:
radius of a circle).

only one subset which has the lowest overall fuel cost and is known as a global configuration. It
is impossible to obtain the final configuration constraints for the general case. So in this section,
the final configuration constraints are derived as the general form for the circular horizontal plane
orbit in which three or four satellites have to be placed in an equilateral polygon of the y-z plane as
Figure 1 (Alfriend et al. 2000, Sabol et al. 2001). It is very difficult to derive the final configuration
constraints for satellites over 4 using equality constraints. Thus constraints of the final configuration
are not given for more than 4 satellites in this paper.

All the satellites have to be placed in a circle of the y-z plane to generate the circular horizontal
plane orbit. Eq. (14) can be derived from the simple geometry that the distance of the pth satellite
from the origin is p.

yp(15)? + 2,(1)% = p?, Vp € {1,2,3,4} (14)

where y,(7¢) is the y-component of the pth satellite at the final time and 2,(7y) is the z-component.
Additional constraints are necessary for satellites to build up a equilateral polygon in the y-z plane.
These constraints are given in Eqs. (15) which can be derived from the principle of center of mass.

N N
> up(7) =0, and D z(77) =0, Vpe€ {1,2,3,4} (15)

p=1 p=1

However, one constraint have to be added to build up a equilateral square in case of four satellite
formation because the number of constraints in Eq. (14) and Egs. (15) is lower than unknown
parameters such as y and z components for 4 satellites. For example, 4 satellites which are placed
in some inscribed rectangle of a circle can satisfy constraints of Eqs. (15). An additional constraint
can be derived from the fact that the areas of all possible triangles which can be made from 3 out of
4 satellites located in a equilateral square is same.

Vil —a)s - D) -0 = 7 (16)

where,

s:%m+b+@
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a =/l (77) = 1a(rg) + [a(7y) = 2 ()2
b= /l1(ry) — us(r)]? + [ () — 2 (72

¢ =/l2(5) = ys(7)]2 + [2a(ry) — 2 (72

Eq. (16) means the area of a triangle constituted from any 3 satellites, which can be obtained
from the Heron’s formula that the area of a triangle can be calculated using lengths of three sides of
a triangle. If 4 satellites are placed in some inscribed rectangle of a circle and the area of any triangle
composed by 3 satellites among them is p?, the 4 satellites make a square without exception. Thus
this constraint is enough for four satellites placed in some inscribed rectangle of a circle to make a
square.

If all the satellites are placed in an equilateral polygon of the y-z plane, additional constraints
are necessary for x components and velocities of satellites to maintain the equilateral polygon as
time goes by. These constraints can be derived from periodic solutions of Hill’s equations. Periodic
solutions of Hill’s equations can be obtained by the requirement that the periods of reference satellite
and follow satellites must be equal. Periodic solutions of relative motion (Alfriend et al. 2000) for a
circular horizontal plane orbit are given below

T = £sin(7 + a) :i::gcos(7+a)

y=pcos(T +a) y=—psin(t + )

z=psin(t+a) 2= pcos(t+ ) an
If y and z components of all satellites are calculated using Eqs. (14), (15), (16) and (17), con-

straints for velocities and x components of all satellites can be given by Eqs. (18) and Eq. (19) using
Egs. (17).

Up(Ts) + 2p(77) =0

ZP(Tf) Yp ( ) = 0’ VpE {17273)4} (18)
2&y(15) — 2p(75) =0
2zp(7s) + Up(17) =0,  Vpe{1,2,3,4} (19)

where z,(7y) is the x-component of pth satellite at the final time and £,(7¢), yp(7y¢) and 2,(7y) are
the velocities of pth satellite at the final time for x, y and z, respectively. These equations, Egs.
(14), (15), (16), (18) and (19), are add to the parameter optimization problem as constraints of final
configuration for circular horizontal plane orbit.

4. NUMERICAL SIMULATION AND RESULTS

In this section, a optimal formation trajectory-planning is tested using parameter optimization
technique with constraints of collision avoidance and final configuration. As mentioned in the previ-
ous section, all satellites have to make the equilateral polygon in the circular horizontal plane orbit at
the final time and a satellite should be far from other satellites over a radius of a sphere for collision
avoidances at all nodes. All data for numerical simulation is given in the Table 1 for the optimal for-
mation trajectory-planning. If the number of nodes and satellites are given, the number of unknown
parameters and constraints for collision avoidances and final configuration can be determined. We
consider two cases of a configuration and a reconfiguration with 3 and 4 satellites respectively.
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Table 1. Numerical data for the simulation.

For 3 satellites For 4 satellites
orbit mean motion (w) 1.095E-3 [rad/sec]  1.095E-3 [rad/sec]
radius of a circle {p) 1000 {m] 1000 [m]
parameter No. of nodes (N) 15 15
No. of sub intervals (M) 5 5
No. of unknown parameters 136 181
maximum of control input (¥mae)  0.003/(w * w) 0.003/(w * w)
minimum of time (Tpin ) 2% 7w/10 2xm/10
maximum of time (Tmaz) i ™
constraints  radius of sphere for collision 50 [m] 50 [m]
avoidance (Rg)
No. of constraints for collision 210 420
avoidances (inequality)
No. of constraints for final 17 23

configuration (equality)
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Figure 2. Relation of cost function and the number of nodes for 3 satellites.

If the number of nodes increases, it takes longer time to get optimal trajectories because the
number of unknown parameters and constraints for collision avoidances increases about twice even
though the number of constraints of final configuration is same. For example, consider the cases of
10 and 20 nodes for 4 satellites. The number of unknown parameters and constraints for collision
avoidances are 121 and 54 for 10 nodes and are 241 and 114 for 20 nodes. Figure 2 shows the
relation of cost function and the number of nodes for configuration with 3 satellites. (a) is the case
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Figure 3. Trajectories of a reconfiguration with 3 satellites.
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Figure 4. Trajectories of a reconfiguration with 4 satellites.
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Figure 5. Control inputs of a reconfiguration with 3 satellites (3 = 0.5).

considering the minimization of fuel and (b) is for the minimization of final time in Figure 2. The
number of nodes, 15 was used for a optimal formation trajectory-planning in this paper because cost
function is nearly equal over 15 nodes from this results.

Case A. Reconfiguration of three and four satellite formation

In this example, it is assumed that 3 and 4 satellites are evenly spaced in a circle of 2,000 m
radius in y-z plane at the initial time. At the final time, positions of all satellites have to form an
equilateral polygon on a circle of 1,000 m radius in the y-z plane. Simulation is performed for three
cases of the minimization of fuel (8 = 0.0), the minimization of time (8 = 1.0) and the minimization
of fuel and time (3 = 0.5) using reconfiguration problem with 3 satellites. And the minimization
of fuel and time (8 = 0.5) is considered for reconfiguration problem with 4 satellites. Figure 3
shows the trajectories of reconfiguration in three dimensional space and y-z plane for three satellite
formation according to three minimization strategies mentioned above. Positions of all the satellites
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Figure 6. Trajectories of a configuration with 3 satellites.
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Figure 7. Trajectories of a configuration with 4 satellites.

form a equilateral triangle in the y-z plane at the final time from Figure 3. As a weighting factor (3)
increases, the length of trajectories of all the satellites becomes shorter because the increasement of
a weighting factor means from Eq. (5) that the cost function puts more weight on the final time than
a fuel consumption. Figure 4 shows the trajectories of reconfiguration for four satellite formation
according to minimization strategy of final time and fuel consumption (8 = 0.5). From Figure 4, all
satellites form a square in the y-z plane at the final time.

Control inputs of a satellite is shown in Figure 5 for reconfiguration problem of Figure 3c. The
number of unknown control inputs is 15 for x component and a node is divided into 5 sub intervals
in which control inputs are calculated by linear interpolation not by estimation.

Case B. Configuration of three and four satellite formation

In this case, it is assumed that 3 and 4 satellites can have any position at the initial time. However
positions of all the satellites should form an equilateral polygon on a circle of 1,000 m radius in the
y-z plane at the final time. Trajectories of three dimensional space and y-z plane are shown in Figure
6 for configuration problem with 3 satellites and Figure 7 for configuration problem with 4 satellites.
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5. CONCLUSIONS

A new method is presented to get optimal trajectories in the configuration and reconfiguration
mission of satellite formation flying based on parameter optimization technique which is solved us-
ing SQP method. New constraints of collision avoidance and final configuration are derived and
applied to the trajectory optimization problem which minimizes fuel consumption and time required
for the formation. From the results of numerical simulation, optimal trajectories of configuration
and reconfiguration could be obtained for a formation flying system with 3 and 4 satellites. If the
number of nodes increases, cost function can decrease but time required for estimation of unknown
parameters will be longer because the number of unknown parameters and constraints for collision
avoidance increases. Thus the suitable number of nodes can be selected according to the cost func-
tion. It is important to determine the suitable radius of a sphere for collision avoidance because
the large radius of a sphere cannot generate the optimal trajectories for the given limit of control in-
puts. This method is useful not for real-time trajectory generation but for optimal trajectory-planning
aspects of mission management.
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