• Title/Summary/Keyword: Optimization Modeling

Search Result 1,188, Processing Time 0.025 seconds

Evaluation Toolkit for K-FPGA Fabric Architectures (K-FPGA 패브릭 구조의 평가 툴킷)

  • Kim, Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.15-25
    • /
    • 2012
  • The research on the FPGA CAD tools in academia has been lacking practicality due to the underlying FPGA fabric architecture which is too simple and inefficient to be applied for commercial FPGAs. Recently, the database of placement positions and routing graphs on commercial FPGA architectures has been built, and provided for enabling the academic development of placement and routing tools. To extend the limit of academic CAD tools even further, we have developed the evaluation toolkit for the K-FPGA architecture which is under development. By providing interface for exchanging data with a commercial FPGA toolkit at every step of mapping, packing, placement and routing in the tool chain, the toolkit enables individual tools to be developed without waiting for the results of the preceding step, and with no dependency on the quality of the results, and compared in detail with commercial tools at any step. Also, the fabric primitive library is developed by extracting the prototype from a reporting file of a commercial FPGA, restructuring it, and modeling the behavior of basic gates. This library can be used as the benchmarking target, and a reference design for new FPGA architectures. Since the architecture is described in a standard HDL which is familiar with hardware designers, and read in the tools rather than hard coded, the tools are "data-driven", and tolerable with the architectural changes due to the design space exploration. The experiments confirm that the developed library is correct, and the functional correctness of applications implemented on the FPGA fabric can be validated by simulation. The placement and routing tools are under development. The completion of the toolkit will enable the development of practical FPGA architectures which, in return, will synergically animate the research on optimization CAD tools.

The Analysis of Informatics Gifted Elementary Students' Computational Problem Solving Approaches in Puzzle-Based Learning (퍼즐 기반 학습에서 초등정보영재의 컴퓨팅적 문제 해결 접근법 분석)

  • Lee, Eunkyoung;Choi, JeongWon;Lee, Youngjun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.191-201
    • /
    • 2014
  • The purpose of this study is to propose strategies of puzzle-based learning for Informatics gifted education through analyzing Informatics gifted elementary students' computational problem solving approaches in puzzle-based learning contexts. Six types of educational puzzles, which are constraints, optimization, probability, statistically speaking, pattern recognition, and strategy, were used in teaching 14 Informatics gifted students for 8 sessions. The results of pre and post test and each students' answers were analyzed to identify why students were not able to solve the puzzles. We also analysed what essential computational strategies are needed to solve each type of puzzles, and what students did not know in solving puzzle problems. We identified some problems caused by puzzle representation methods, and various students' intuitions that disturb puzzle solving. Also, we identified essential computational strategies to solve puzzles: backtracking, dynamic programming, abstraction, modeling, and reduction of big problem. However, students had difficulties in applying these strategies to solve their puzzle problems. We proposed the revised puzzle-based learning strategies, which is based on the improved problem representation, just-in-time cognitive feedbacks, and web-based learning system.

Cross-layer Design of Joint Routing and Scheduling for Maximizing Network Capacity of IEEE 802.11s based Multi-Channel SmartGrid NAN Networks (IEEE 802.11s 를 사용한 스마트그리드 NAN 네트워크의 최대 전송 성능을 위한 다중 채널 스케쥴링과 라우팅의 결합 설계)

  • Min, Seok Hong;Kim, Bong Gyu;Lee, Jae Yong;Kim, Byung Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.25-36
    • /
    • 2016
  • The goal of the SmartGrid is to maximize energy efficiency by exchanging bi-directional real-time power information with the help of ICT(Information and Communication Technology). In this paper, we propose a "JRS-MS" (Joint Routing and Scheduling for Multi-channel SmartGrid) algorithm that uses numerical modeling methods in IEEE 802.11s based STDMA multi-channel SmartGrid NAN networks. The proposed algorithm controls the amount of data transmission adaptively at the link layer and finds a high data-rate path which has the least interference between traffic flows in multi-channel SmartGrid NAN networks. The proposed algorithm improve transmission performance by enhancing network utilization. By comparing the results of performance analysis between the proposed algorithm and the JRS-SG algorithm in the previous paper, we showed that the JRS-MS algorithm can improve transmission performance by maximally utilizing given network resources when the number of flows are increasing in the multi-hop NAN wireless mesh networks.

Dynamic Modeling of Cooling System Thermal Management for Automotive PEMFC Application (자동차용 연료전지 냉각계통 열관리 동적 모사)

  • Han, Jae Young;Lee, Kang Hun;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1185-1192
    • /
    • 2012
  • The typical operating temperature of an automotive fuel cell is lower than that of an internal combustion engine, which necessitates a refined strategy for thermal management. In particular, the performance of the cooling module has to be higher for a fuel cell system because the temperature difference between the fuel cell and the surrounding is lower than in the case of the internal combustion engine. Even though the cooling system of an automotive fuel cell determines the operating temperature and temperature distribution of the fuel cell, it has attracted little research attention. This study presents the mathematical model of a cooling system for an automotive fuel cell system using Matlab/$Simulink^{(R)}$. In particular, a radiator model is developed for design optimization from the development stage to the operating stage for an automotive fuel cell. The cooling system model comprises a fan, pump, and radiator. The pump and fan model have an empirical relation, and the dynamics of the pump and fan are only explained by motor dynamics. The basic design study was conducted, and the geometric setup of the radiator was investigated. When the control logic was applied, the pump senses the coolant inlet temperature and the fan senses the coolant out temperature. Additionally, the cooling module is integrated with the fuel cell system model so that the performance of the cooling module can be investigated under realistic operating conditions.

Robust Optimal Design of Disc Brake Based on Response Surface Model Considering Standard Normal Distribution of Shape Tolerance (표준정규분포를 고려한 반응표면모델 기반 디스크 브레이크의 강건최적설계)

  • Lee, Kwang-Ki;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1305-1310
    • /
    • 2010
  • In a practical design process, the method of extracting the design space information of the complex system for verifying, improving, and optimizing the design process by taking into account the design variables and their shape tolerance is very important. Finite element analysis has been successfully implemented and integrated with design of experiment such as D-Optimal array; thus, a response surface model and optimization tools have been obtained, and design variables can be optimized by using the model and these tools. Then, to guarantee the robustness of the design variables, a robust design should be additionally performed by taking into account the statistical variation of the shape tolerance of the optimized design variables. In this study, a new approach based on the use of the response surface model is proposed; in this approach, the standard normal distribution of the shape tolerance is considered. By adopting this approach, it is possible to simultaneously optimize variables and perform a robust design. This approach can serve as a means of efficiently modeling the trade-off among many conflicting goals in the applications of finite element analysis. A case study on the robust optimal design of disc brakes under thermal loadings was carried out to solve multiple objective functions and determine the constraints of the design variables, such as a thermal deformation and weight.

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

Substitution of Heavy Complementarity Determining Region 3 (CDR-H3) Residues Can Synergistically Enhance Functional Activity of Antibody and Its Binding Affinity to HER2 Antigen

  • Moon, Seung Kee;Park, So Ra;Park, Ami;Oh, Hyun Mi;Shin, Hyun Jung;Jeon, Eun Ju;Kim, Seiwhan;Park, Hyun June;Yeon, Young Joo;Yoo, Young Je
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.217-228
    • /
    • 2016
  • To generate a biobetter that has improved therapeutic activity, we constructed scFv libraries via random mutagenesis of several residues of CDR-H3 and -L3 of hu4D5. The scFv clones were isolated from the phage display libraries by stringent panning, and their antiproliferative activity against HER2-positive cancer cells was evaluated as a primary selection criterion. Consequently, we selected AH06 as a biobetter antibody that had a 7.2-fold increase in anti-proliferative activity ($IC_{50}$: 0.81 nM) against the gastric cancer cell line NCI-N87 and a 7.4-fold increase in binding affinity ($K_D$: 60 pM) to HER2 compared to hu4D5. The binding energy calculation and molecular modeling suggest that the substitution of residues of CDR-H3 to W98, F100c, A101 and L102 could stabilize binding of the antibody to HER2 and there could be direct hydrophobic interactions between the aromatic ring of W98 and the aliphatic group of I613 within HER2 domain IV as well as the heavy and light chain hydrophobic interactions by residues F100c, A101 and L102 of CDR-H3. Therefore, we speculate that two such interactions were exerted by the residues W98 and F100c. A101 and L102 may have a synergistic effect on the increase in the binding affinity to HER2. AH06 specifically binds to domain IV of HER2, and it decreased the phosphorylation level of HER2 and AKT. Above all, it highly increased the overall level of p27 compared to hu4D5 in the gastric cancer cell line NCIN82, suggesting that AH06 could potentially be a more efficient therapeutic agent than hu4D5.

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

Evaluation of p-y Curves of Piles in Soft Deposits by 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 점성토 지반의 p-y 곡선 산정)

  • Lee, Si-Hoon;Kim, Sung-Ryul;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.7
    • /
    • pp.47-57
    • /
    • 2011
  • The p-y curve has been used to design pile foundations subjected to lateral loading. Although the p-y curve has a large influence on the pile lateral behavior, p-y curves have not been clearly suggested. In this study, the p-y curve of clay was evaluated for drilled shafts in marine deposits by using 3-dimensional numerical analyses. First, the optimization study was performed to properly determine boundary extent, mesh size, and interface stiffness. The numerical modeling in the study was verified by comparing the calculated and the pile loading test results. Then, the p-y curves of single and group piles were evaluated from the parametric study. The selected parameters were pile diameter, pile Young's modulus and pile head fixed condition for a single pile, and pile spacing for group piles. Finally, the p-multiplier was evaluated by comparing the p-y curves of a single pile and group piles. As a result, the p-multiplier at pile spacing of 3D was 0.83, 0.67 and 0.78 for the front, middle, and back row piles, respectively, and showed values similar to those of O'Neill and Reese (1999). For the pile group with pile spacing larger than 60, the group effect can be ignorable.