DOI QR코드

DOI QR Code

Robust Optimal Design of Disc Brake Based on Response Surface Model Considering Standard Normal Distribution of Shape Tolerance

표준정규분포를 고려한 반응표면모델 기반 디스크 브레이크의 강건최적설계

  • 이광기 (브이피 코리아) ;
  • 이용범 (한국기계연구원 시스템신뢰성연구센터) ;
  • 한승호 (동아대학교 기계공학과)
  • Received : 2010.06.07
  • Accepted : 2010.07.13
  • Published : 2010.09.01

Abstract

In a practical design process, the method of extracting the design space information of the complex system for verifying, improving, and optimizing the design process by taking into account the design variables and their shape tolerance is very important. Finite element analysis has been successfully implemented and integrated with design of experiment such as D-Optimal array; thus, a response surface model and optimization tools have been obtained, and design variables can be optimized by using the model and these tools. Then, to guarantee the robustness of the design variables, a robust design should be additionally performed by taking into account the statistical variation of the shape tolerance of the optimized design variables. In this study, a new approach based on the use of the response surface model is proposed; in this approach, the standard normal distribution of the shape tolerance is considered. By adopting this approach, it is possible to simultaneously optimize variables and perform a robust design. This approach can serve as a means of efficiently modeling the trade-off among many conflicting goals in the applications of finite element analysis. A case study on the robust optimal design of disc brakes under thermal loadings was carried out to solve multiple objective functions and determine the constraints of the design variables, such as a thermal deformation and weight.

복잡한 시스템 계의 설계정보를 효과적으로 추출하기 위해서 형상최적설계가 수행되는 경우, 일반적으로 유한요소해석 기법과 D-최적배열을 이용한 실험계획법이 연동된 반응표면모델을 구성하고 여기에 최적설계기법이 적용된다. 그러나, 설계변수에 형상공차와 같은 변동성이 존재하면 최적해의 강건성 확보를 위하여 설계변수의 형상공차를 확률론적인 변동성으로 고려한 추가적인 강건설계가 필요하다. 본 연구에서는 계산시간이 많이 소요되는 유한요소해석에 의한 강건설계문제에 설계변수의 표준정규분포를 고려한 반응표면모델을 구축하여 최적설계를 수행하므로서 손쉽게 강건최적값을 구하는 방법을 제안하였다. 승용차용 브레이크 디스크에 제안된 방법을 적용하여 열변형과 중량을 최소화하는 설계변수의 강건최적해를 구하고, 몬테카를로 시뮬레이션 추정결과와 비교하여 이의 적합성을 검증하였다.

Keywords

References

  1. Shin, D. C., Kim, T. J., Chi, T. S. and Kim, K. Y., 2000, "Optimal Brake Disc Design Method for High Speed Judder Reduction," 2000 Annual Spring Conference of KSAE, pp. 905-912.
  2. Song, B. C., Kang, D. H., Kim, Y. H., Park, Y. C. and Lee, K. H., 2007, "Structural Design of a Circumferential Friction Disc-Brake, considering Thermoelastic Instability," 2007 Annual Spring Conference of KSAE, pp. 1554-1561.
  3. Kim, Y. S. and An, S. C., 2008, "Thermal Stress Analysis of Ventilated Disc Brake," Journal of the KOSOS, Vol. 23, No. 3, pp. 25-29.
  4. Federal Motor Vehicle Safety Standard ("FMVSS") 105-75, 1986, 49 C.F.R. Sec. 571.105.
  5. Song, P. G., Spiryagin, M. and Yoo, H. H., 2008, "Robust Design Optimization of the Vehicle Ride Comfort considering Tolerance Effect," 2008 Annual Spring Conference of KSME, Dynamic & Control Division, pp. 17-23.
  6. Kim, J. H., Park, J. M. and Lee, J. S., 2003, "Robust Optimization of Caliper Brake Disc considering Tolerance," Transaction of KSME A, Vol. 27, No. 6, pp. 905-913. https://doi.org/10.3795/KSME-A.2003.27.6.905
  7. Lee, K. K., Park, C. K. and Han, S. H., 2009, "Six Sigma Robust Design for Railway Vehicle Suspension," Transaction of KSME A, Vol. 33, No. 10, pp. 1132-1138. https://doi.org/10.3795/KSME-A.2009.33.10.1132
  8. Lee, K. K. and Han, S. H., 2010, "Development of Computational Orthogonal Array based Fatigue Life Prediction Model for Shape Optimization of Turbine Blade," Transaction of KSME A, Vol. 34, No. 5, pp. 611-617. https://doi.org/10.3795/KSME-A.2010.34.5.611
  9. Taylor, W. A., 1991, Optimization & Variation Reduction in Quality, McGraw-Hill.
  10. Thuresson, D., 2000, "Thermomechanical Analysis of Friction Brake, " SAE 2000-01-2275.
  11. Nguyen, N. K., and Miller, F. L., 1992, "A Review of Some Exchange Algorithms for Constructing Discrete D-optimal Design," Computational Statistics & Data Analysis, Vol. 14, pp. 489-498. https://doi.org/10.1016/0167-9473(92)90064-M
  12. Myers, R. H. and Montgomery, D. C., 1995, Response Surface Methodology – Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York.
  13. Brue, G. and Launsby, R. G., 2003, Design for Six Sigma, McGraw-Hill.
  14. SAS Institute Inc., 2009, JMP User’s Guide.

Cited by

  1. Tolerance Optimization of Lower Arm Used in Automobile Parts Considering Six Sigma Constraints vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1323