• Title/Summary/Keyword: Optimality criteria

Search Result 103, Processing Time 0.023 seconds

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.

Soft Combination Schemes for Cooperative Spectrum Sensing in Cognitive Radio Networks

  • Shen, Bin;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • This paper investigates linear soft combination schemes for cooperative spectrum sensing in cognitive radio networks. We propose two weight-setting strategies under different basic optimality criteria to improve the overall sensing performance in the network. The corresponding optimal weights are derived, which are determined by the noise power levels and the received primary user signal energies of multiple cooperative secondary users in the network. However, to obtain the instantaneous measurement of these noise power levels and primary user signal energies with high accuracy is extremely challenging. It can even be infeasible in practical implementations under a low signal-to-noise ratio regime. We therefore propose reference data matrices to scavenge the indispensable information of primary user signal energies and noise power levels for setting the proposed combining weights adaptively by keeping records of the most recent spectrum observations. Analyses and simulation results demonstrate that the proposed linear soft combination schemes outperform the conventional maximal ratio combination and equal gain combination schemes and yield significant performance improvements in spectrum sensing.

  • PDF

Optimum design of parabolic and circular arches with varying cross section

  • Uzman, Umit;Daloglu, Ayse;Saka, M. Polat
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.465-476
    • /
    • 1999
  • A structural optimization process is presented for arches with varying cross-section. The optimality criteria method is used to develop a recursive relationship for the design variables considering displacement, stresses and minimum depth constraints. The depth at the crown and at the support are taken as design variables first. Then the approach is extended by taking the depth values of each joint as design variable. The curved beam element of constant cross section is used to model the parabolic and circular arches with varying cross section. A number of design examples are presented to demonstrate the application of the method.

Performance Evaluation of On-Demand Routing Protocol using Look-ahead Selective Flooding in Ad-hoc Network (Ad-hoc 네트워크에서 Look-ahead Selective Flooding을 이용한 On-Demand 라우팅 프로토콜 성능 개선)

  • Yo-chan Ahn
    • Journal of Information Technology Applications and Management
    • /
    • v.10 no.2
    • /
    • pp.61-71
    • /
    • 2003
  • Ad-hoc networks are characterized by multi-hop wireless links, frequently changing network topology and the need for efficient dynamic routing protocols. In an Ad-hoc network, each host assumes the role of a router and relays packets toward final destinations Because a packet is broadcast to all neighboring nodes, the optimality criteria of wireless network routing is different from that of wired network routing. tn this paper 1 point out the more important cost factor than the number of links in the Ad-hoc network. A class routing protocols called on-demand protocols has recently found attention because of their low routing overhead since it performs a blind flooding to look for a path. In this paper, 1 propose the method which reduces overhead by using the information of neighboring nodes and doing a selective flooding. Simulation results demonstrate better reduction of routing overheads with this scheme.

  • PDF

$ fractional factorial designs of resolution V and taguchi method

  • 김상익
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • In this paper, minimal balanced $2^t$ fractional factorial designs which permit the estimation of main effects and 2-factor interactions are developed by using a partially balanced array. Such designs are characterized by a minimum number of runs and some balancedness property of the variance-covariance matrix of the estimates. In addition to describing the designs, optimality criteria are discussed and the trace-optimal designs are presented. The proposed designs are especially useful in Taguchi method, where we need to investigate up to 2-factor interactions of the control factors.

  • PDF

Development of CAD System for Optimal Topology Design using Density Distribution (밀도 분포를 이용한 최적 위상 설계 시스템의 개발)

  • 정진평;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

Multi-Objective Optimization of Multistory Shear Building Under Seismic Loads (지진하중을 받는 다층 뼈대구조물의 다목적 최적설계)

  • 조효남;민대홍;정봉교
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.255-262
    • /
    • 2002
  • In this paper, an improved multi-objective optimmum design method is proposed. And it is applied to steel frames under seismic loads. The multi-objective optimization problem is formulated with three optimality criteria, namely, minimum structural weight and maximum strain energy and stability. The Pareto curve can be obtained by performing the multi-objective optimization for multistory shear buildings. In order to efficiently solve the multi-objective optimization problem the decomposition method that separates both system-level and element-level is used. In addition, various techniques such as effective reanalysis technique with respect to intermediate variables and sensitivity analysis using an automatic differentiation (AD) we incorporated. Moreover, the relationship function among section properties induced from the profile is used in order to link system-level and element level. From the results of numerical investigation, it may be stated that the proposed method will lead to the more rational design compared with the conventional one.

  • PDF

Discrete Optimal Design of Tall Steel Structures subject to Lateral Drift Constraints (횡변위 구속조건을 받는 고층철골구조물의 이산형 최적설계)

  • 김호수
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 1998
  • 본 연구는 횡변위 구속조건을 받는 고층철골구조물의 이산형 최적설계를 위해 효율적인 쌍대알고리즘을 제시하고자 한다. 양함수형태의 횡변위 구속조건을 설정하기 위해 가상일의 원리가 적용되면 고층철골조의 설계변수의 수를 줄여주기 위해 쌍대알고리즘내에 단면특성관계식이 추가된다. 이 알고리즘의 검증을 위하여 횡하중을 받는 네 가지 형태의 고층철골조 예제가 제시되며, 반복과정에서 수렴된 최종물량을 기존의 최적설계방법과 비교해 봄으로써 제시된 알고리즘의 효율성이 검토된다.

  • PDF

Channel Real location Methodologies for Restorable Transmission Networks

  • Joo, Un-Gi
    • Management Science and Financial Engineering
    • /
    • v.9 no.1
    • /
    • pp.29-49
    • /
    • 2003
  • This paper develops channel reallocation methodologies for survival transmission networks, Any failure on a high-speed telecommunication network needs to be restored rapidly and a channel real-location methodology has an important role for the fast restoration. This paper considers the channel reallocation problems under a line restoration with distributed control, where the line restoration restores the failed channels by rerouting the channels along the two alternative routes. The objective is to determine the optimal number of rerouting channels on the alternative rerouting paths of a given transmission network, where the optimality criteria are the first, the last and the mean restoration times. For each criterion, the problem is formulated as a mixed integer programming and the optimal channel reallocation algorithm is suggested based upon the characterization of the optimal solution.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.