• 제목/요약/키워드: Optimal-solution

검색결과 3,703건 처리시간 0.036초

DNA 코딩을 이용한 multi-modal 함수의 최적점 탐색방법 (Global Optimum Searching Technique of Multi-Modal Function Using DNA Coding Method)

  • 백동화;강환일;김갑일;한승수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.225-228
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal solution since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems. This paper presents DNA coding method for finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms (GA). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses a tool of calculation or Information store with DNA molecules and four-type bases denoted by the symbols of A(Ademine), C(Cytosine), G(Guanine) and T(Thymine). The same operators, selection, crossover, mutation, are applied to the both DNA coding algorithm and genetic algorithms. The results show that the DNA based algorithm performs better than GA.

  • PDF

Internet Shopping Optimization Problem With Delivery Constraints

  • Chung, Ji-Bok
    • 유통과학연구
    • /
    • 제15권2호
    • /
    • pp.15-20
    • /
    • 2017
  • Purpose - This paper aims to suggest a delivery constrained internet shopping optimization problem (DISOP) which must be solved for online recommendation system to provide a customized service considering cost and delivery conditions at the same time. Research design, data, and methodology - To solve a (DISOP), we propose a multi-objective formulation and a solution approach. By using a commercial optimization software (LINDO), a (DISOP) can be solved iteratively and a pareto optimal set can be calculated for real-sized problem. Results - We propose a new research problem which is different with internet shopping optimization problem since our problem considers not only the purchasing cost but also delivery conditions at the same time. Furthermore, we suggest a multi-objective mathematical formulation for our research problem and provide a solution approach to get a pareto optimal set by using numerical example. Conclusions - This paper proposes a multi-objective optimization problem to solve internet shopping optimization problem with delivery constraint and a solution approach to get a pareto optimal set. The results of research will contribute to develop a customized comparison and recommendation system to help more easy and smart online shopping service.

LSD에 의한 철근콘크리트 뼈대 구조의 최적설계 (Optimal Design of Reinforced Concrete Frame Structure by Limit State Design Method)

  • 김동희;유홍렬;박문호
    • 한국농공학회지
    • /
    • 제27권4호
    • /
    • pp.61-67
    • /
    • 1985
  • This study is concerned with the optimum design of reinforced concrete frame structure with multi-stories and multi-bays by Limit State Design Method aimed to establish a synthetical optimal method that can simultaneously acomplish structural analysis and sectional desig. For optimum solution, the Successive Linear Programming known as effective to nonlinear optimization problem: including both multi-design variables and mulit-constrained condition was applied. The developed algorithm was applied to an actual structure and reached following results. 1)The developed algorithm was rvey effective converging to an optimal solution with 3 to 5 iteration. 2)An optimal solution was showed when bending moment redistribution factor a was 0.80. 3)The column was, regardless of story, controlled by the long column when unbraced, while in case of braced column, it is designed with 3 short column controlled by thrust and bending moment, and the supporting condition had little effect on the optimization results.

  • PDF

Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit

  • Cho, Han-Cheol;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제25권3호
    • /
    • pp.255-266
    • /
    • 2008
  • The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.

Blotto 게임을 풀기위한 새로운 근사해법 절차 (New Fictitious Play Procedure For Solving Blotto Games)

  • 이재영;이문걸
    • 한국국방경영분석학회지
    • /
    • 제31권1호
    • /
    • pp.107-121
    • /
    • 2005
  • In this study, a new fictitious play (FP) procedure is presented to solve two-person zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS games by assuming that the two players take turns selecting optimal responses to the opponent's strategy observed so far. It is known that FP converges to an optimal solution, and it may be the only realistic approach to solve large games. The algorithm uses dynamic programming (DP) to solve FP subproblems. Efficiency is obtained by limiting the growth of the DP state space. Blotto games are frequently used to solve simple missile defense problems. While it may be unlikely that the models presented in this paper can be used directly to solve realistic offense and defense problems, it is hoped that they will provide insight into the basic structure of optimal and near-optimal solutions to these important, large games, and provide a foundation for solution of more realistic, and more complex, problem

2차원 공간에서의 휴리스틱 배치 알고리즘 및 구현에 관한 연구 (A Study and Implementation of the Heuristic Autonesting Algorithm in the 2 Dimension Space)

  • 양성모;임성국;고석호;김현정;한관희
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.259-268
    • /
    • 1999
  • In order to reduce the cost of product and save the processing time, optimal nesting of two-dimensional part is an important application in number of industries like shipbuilding and garment making. There have been many studies on finding the optimal solution of two-dimensional nesting. The problem of two-dimensional nesting has a non-deterministic characteristic and there have been various attempts to solve the problem by reducing the size of problem rather than solving the problem as a whole. Heuristic method and linearlization are often used to find an optimal solution of the problem. In this paper, theoretical and practical nesting algorithm for rectangular, circular and irregular shape of two-dimensional parts is proposed. Both No-Fit-Polygon and Minkowski-Sum are used for solving the overlapping problem of two parts and the dynamic programming technique is used for reducing the number search spae in order to find an optimal solution. Also, nesting designer's expertise is complied into the proposed algorithm to supplement the heuristic method.

  • PDF

비대칭 외판원문제에서 호의 후보집합 결정 (Determination of Arc Candidate Set for the Asymmetric Traveling Salesman Problem)

  • 김헌태;권상호;지영근;강맹규
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.129-138
    • /
    • 2003
  • The traveling salesman problem (TSP) is an NP-hard problem. As the number of nodes increases, it takes a lot of time to find an optimal solution. Instead of considering all arcs, if we select and consider only some arcs more likely to be included in an optimal solution, we can find efficiently an optimal solution. Arc candidate set is a group of some good arcs. For the Lack of study in the asymmetric TSP. it needs to research arc candidate set for the asymmetric TSP systematically. In this paper, we suggest a regression function determining arc candidate set for the asymmetric TSP. We established the function based on 2100 experiments, and we proved the goodness of fit for the model through various 787problems. The result showed that the optimal solutions obtained from our arc candidate set are equal to the ones of original problems. We expect that this function would be very useful to reduce the complexity of TSP.

AN APPROXIMATE ALTERNATING LINEARIZATION DECOMPOSITION METHOD

  • Li, Dan;Pang, Li-Ping;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1249-1262
    • /
    • 2010
  • An approximate alternating linearization decomposition method, for minimizing the sum of two convex functions with some separable structures, is presented in this paper. It can be viewed as an extension of the method with exact solutions proposed by Kiwiel, Rosa and Ruszczynski(1999). In this paper we use inexact optimal solutions instead of the exact ones that are not easily computed to construct the linear models and get the inexact solutions of both subproblems, and also we prove that the inexact optimal solution tends to proximal point, i.e., the inexact optimal solution tends to optimal solution.

Karmarkar 기법의 최적기저 결정에 관한 연구 (Determining the Optimal Basis in Karmarkar's Algorithm)

  • 김병제;박순달
    • 한국경영과학회지
    • /
    • 제16권1호
    • /
    • pp.89-96
    • /
    • 1991
  • When a feasible solution approaches to the optimal extreme point in Karmakar's algorithm, components of the search direction vector for a solution converge at a certain value according to the corresponding columns of the optimal basis and the optimal nonbasis. By using this convergence properties of Karmarkar's algorithm, we can identify columns of the optimal basis before the final stage of the algorithm. The complexity of Karmarker's algorithm with newly proposed termination criterion does not increase. A numerical experiments for the problems which were generated by random numbers are also illustrated. Experimental results show that the number of iterations required for determining columns of the optimal basis depends on problems. For all cases, however, columns of the optimal basis are exactly verified when this termination criterion is used.

  • PDF

Localization and a Distributed Local Optimal Solution Algorithm for a Class of Multi-Agent Markov Decision Processes

  • Chang, Hyeong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.358-367
    • /
    • 2003
  • We consider discrete-time factorial Markov Decision Processes (MDPs) in multiple decision-makers environment for infinite horizon average reward criterion with a general joint reward structure but a factorial joint state transition structure. We introduce the "localization" concept that a global MDP is localized for each agent such that each agent needs to consider a local MDP defined only with its own state and action spaces. Based on that, we present a gradient-ascent like iterative distributed algorithm that converges to a local optimal solution of the global MDP. The solution is an autonomous joint policy in that each agent's decision is based on only its local state.cal state.