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Abstract

In this study, a new fictitious play (FP) procedure is presented to solve
two-person zero-sum (TPZS) Blotto games. The FP solution procedure solves TPZS
games by assuming that the two players take turns selecting optimal responses to
the opponent’s strategy observed so far. It is known that FP converges to an
optimal solution, and it may be the only realistic approach to solve large games. The
algorithm uses dynamic programming (DP) to solve FP subproblems. Efficiency is
obtained by limiting the growth of the DP state space.

Blotto games are frequently used to solve simple missile defense problems. While
it may be unlikely that the models presented in this paper can be used directly to
solve realistic offense and defense problems, it is hoped that they will provide insight
into the basic structure of optimal and near-optimal solutions to these important,
large games, and provide a foundation for solution of more realistic, and more
complex, problem

(Keywords : Fictitious Play, New FP Procedure, Two Person Zero Sum, Blotto Game

Dynamic Programmi.)
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1. Introduction

Fictitious play (FP), first introduced by Brown and Robinson (1951), is an iterative procedure used to
approximate solutions to two-person zero-sum (TPZS) games. At each iteration of FP, each player
chooses a pure strategy that is a best reply to the mixed strategy represented by the aggregation of all
of other player's pure strategies played so far, assuming they will be chosen based on the empirical
probability distribution induced by their historical frequency in all previous iterations. Fictitious play can
be thought of as mimicking the behavior of players learning from their opponents.

The purpose of this thesis is to investigate the use of fictitious play in the solution of Blotto games
and their generalizations. In Blotto games, opponents each allocate a limited number of forces to a
specified number of areas. Payoffs in each area accrue to the players based on the number of forces
assigned to each area. The main application of Blotto games has been the analysis of missile attack and
defense problems.

This thesis is organized as follows: in Chapter 2, we introduce TPZS games, Blotto games and the
solution procedure. In Chapter 3, we solve various versions of the problem using FP. Chapter 4 provides

conclusions and suggests further work.

2. Two—person zero—sum game

2.1 Definitions

A two-person zero-sum (TPZS) game (von Neumann and Morgenstern, 1944) is a situation where
there are two players having directly opposite interests. In a TPZS game, player 1 (also called X, the
row player, or the msximizer) has m pure strategies and player 2 (Y, column player, minimizer) has n
pure strategies. A player can commit to playing a pure strategy, or, by randomizing his choice among
several pure strategies, he can employ a mixed strategy. A mixed strategy is represented by a vector of

probabilities of choosing each pure strategy. For player 1, we write this vector as:
T
x=(x,K,x,)

Because x is a vector of probabilities, we have the restrictions that
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and

Similar notation and restrictions are used for player 2, whose mixed strategy is written as:

y= (ypK ayn)T.

In a TPZS game, each player chooses a strategy (pure or mixed), unknown to the other, and both
strategies are revealed simultaneously. The result of the game depends on the strategy used by each
player. If X and Y choose their ith and jth pure strategies, respectively, then the result of game,
denoted aij, represents the amount that Y has to pay X. Equivalently, the payoffs to X and Y are aij
and aij, respectively. Note that the sum of the two payoffs is zero, which explains the name of the
game. If two players employ mixed strategies x and y(and a pure strategy is just a special case of a
mixed strategy), then the payoff to player 1 is:

DIPIEATN
i=1 j=1
which can be seen as the expected payoff among all of the pure strategies represented by x and y.

Therefore, aTPZS game is completely defined when the payoff for each pair of X and Y pure

strategies is determined. These payoffs can be summarized in an mn matrix, generally referred to as a

payoff matrix, i.e.

and the payoff to player 1 is then x' Ay

In playing the game, both players are assumed to choose a strategy that achieves the most favorable outcome. This means
that X would choose the strategy that maximizes x" AY over all choices of y. On the other hand, ¥ would choose the strategy

. T .
that minimizes X  4Y over all choices of x.

A TPZS game has an equilibrium point when each player can guarantee an optimal result by always
choosing a single pure strategy. When equilibrium cannot be achieved, players must use mixed

strategies to optimize the value of the game.

To choose the best randomized strategy, X must find the * = (%,K ,x,) to
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N ' .
mgx{m]m[z xa,]: Z‘x, =1, x,20, i=1,...,m}
~ .

i=1

myin{m’ax[z:qjyj]: Zy}:l, ¥;20, j=1,...n}
j=l .

‘a Let x*and y*

Similarly, ¥ must find the y= (yl’K ’yn) to

denote the optimal strategies for X and Y. Then, v* = (x*)TAy* is the value of the game. One of the central results of game

V*: i a. |. .=1, 20, .31,...,
theory states (Winston, 1991) that: ’max{m]m[%:x,au 1 ,Z,:x' % ! m}

v‘=min{max[2a,.jyj]: Zy/.:l, ¥;20, j=L..,n}
and = 7 .

2.2 Linear Programming
When the payoff matrix is specified and it is not too large, linear programming (Winston, 1991) can
be used to find the optimal mixed strategies and the value of the game. For the maximizer (player 1),

n

the problem is to find the mixed strategy * = (%15 5%5) which maximizes “‘}“g"'“ﬁ. That is,

LP1l: max v
subject to D xa,-v20, j=L..n

x =1 and x =1,..,m.
] 3 f] geery

™

It

Similarly, the minimizer (player 2) must solve LP 2:
LP2: min w
subject to z":yja,.j—wSO, i=l,..,m
j=1
iyj =1, and y,=1,..,n.
=
It is easy to show that problems LPl and LFP2 are duals of each other. Moreover, if (v*, x*) and

(w+*, y*) are optimal to problems LP1 and LP2, respectively, then v*=w#,

2.3 Fictitious play(FP): Brown-Robinson method
Fictitious play (FP)was introduced by Brown and Robinson (1951). It is an iterative solution
procedure; in each iteration, players choose pure strategies that are the best response to the empirical

mix of their opponents’ pure strategies seen so far.
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The FP procedure implemented here begins at iteration 1 with player 1 selecting that row
maximizing the minimum row value, and player 2 selecting that column minimizing the maximum
column value. Denote the players’ pure strategies at iteration 1 as x(1) and y(1). These are vectors of
all zeros except for a 1 at the selected row or column locations. At iteration 2, player 1 selects pure
strategy x(2), which is the best row response to y{(1) and player 2 selects pure strategy y(2), which is
the best column response to x(1). And for general iteration k 2, player 1 selects the pure strategy x(k),

which is the best row response to

player 2 selects pure strategy y(k), which is the best column response to

e _ 1 i"m
F-1&

(k+1)

. =Gk, . =)
For computational purposes, x s conveniently updated from x " and x*7 as follows:

;(kﬂ):( k .;<k>+( 1 )-x““"
k+1 k+1 .

—(k+1) kY =®w 1 (k41
= —— | + — |
Y (k+1] Y (k+l) r

Any limit points of the sequences {;“) and ;m} are optimal mixed strategy solutions to the game. Also upper and lower
p q

And similarly for player 2,

bounds on the value of the game, v*, are determined at each game play. Specifically, at game iteration £,

—(k-1) (k-1
X

ve=(x ) AP <y <G®) Ay E;k’

and both Yk and Vi converge to V *, but not necessarily monotonically (Eagle and Washburn, 1991).

2.4 Blotto games

2.4.1 Definition
In a Blotto game, there are nl targets, or areas, for player 1 (the attacker) to attack and player 2
(the defender) to defend. The attacker chooses a vector of allocations x, where xk is the number of

attacking units assigned to area k, and player 1 has f attackers to distribute, resulting in the constraint

dwsg

< , . .
E"* 4 . The defender chooses a vector of allocations y subject to & , where yk is the number
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A
defenders assigned by player 2 to area k. The payoff is ,,Z:.: (x"’y")(See Washburn, 1994, pp.107-111 for
a more complete discussion). All allocations are required to be nonnegative, and in a discrete Blotto

game they are also required to be integers.

n+ f-1 n+g-1
The number of pur: strategies for player 1 is( S ]and, for player 2,[ g ), both of which grow

too fast to allow complete enumeration in even moderately sized games. Figure 1 displays a typical

increase in the number of pure strategies for player 1 as f or n increase.

g

Afory:sirnges

/

£

A

&

1w n N 40 50 50 ™OW W o
S ARukard) o Torgataia)

Figure 1. Number of pure strategies for player 1, for /=10 125100, and for »=10

2.42 Playability

In Blotto games, it is sometimes convenient to represent a mixed strategy with the marginal

distributions of the random vector

X=(X,,....X), where X; is the random variable representing the number of attackers assigned to area i. Marginal distributions
X =
satisfying ; ¥ farc playable for the attacker. Similarly, the marginals for the random variable Y= (¥}, ¥,) are playable

for the defender if ;Y’:g. However, the typical approach is to relax these restrictions and simply require that

DEX)=S py LEG)=g

2.4.3 ILP Formulation of Blotto Games

Washburn (1994) presents the LP formulation of Blotto games using the marginal distributions.
However, those formulations do not guarantee playability (although the discussions of those formulations
claimthat playability is not an issue for large problems). We modify the formulation in Washburn (1994)

by explicitly adding constraints that are sufficient to enforce playability.
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The cost of such constraints is twofold: (1) they are sufficient, but not necessary conditions for

playability, so

the solutions we obtain are potentially suboptimal and (2) they introduce integer variables,

rendering integer linear programming (ILP) formulations.

ILP 1 solves a Blotto defense game for the defender’s marginals K,y g), where yi represents

ILP1: min
y.¢,d

st

. . i-y. = E(Y,
the probability that jdefenders are used in any given area. Therefore, Z,:J ¥ =K ").
v=nc+df
Z‘:A(i,j)-yiScﬂi-i; i=0,1..f
j=0

£
Zyj-ng/n
=0

£
2y =1

Jj=0

yeount, =n-y,

y; 20, forallj=0,,..,g
yeount; € {0,....g} and 420

ILP 2 solves a Blotto attack game for the attacker's marginals (xl ’K Xy ) The integer restrictions or ycountj and

xcountiare used to require playability.

ILP2: max

% a,b

s.t

v=na-bg

[
Y AG.))-x 2a-b-j; j=0l..g

i=l

/
Zx,.-isf/n

Vi

Zx,. =1

i=l

xcount, =n-x,

x, >0, foralli=0,1,., 1
xcount, € {0,..., f} and 5>0

These playability constraints are too restrictive; they are sufficient to enforce playability but they are provably not necessary.

244 New Fictitious Play Procedure

We derive the dynamic programming recurrence relation for solving Blotto games with FP, using a

general payoff function4«(%:¥) which is the amount player 2 pays to player 1 when player 1 allocates

X units to area k and player 2 allocates y units to area k. The total payoff is obtained by summing

the rewards over the n areas. The recurrence can be solved without explicitly keeping track of every

attack or defense played; rather, the information required is simply the number of times a given force
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level (number of attackers or defenders) has been used in each area, over all attacks and defenses seen
so far.

We first consider the defender’s problem at FP iteration K, which is to allocate g defenders over n
cities to minimize the expected payoff, given that K attacks have been observed so far. Each attack

k Kk KNT
can be represented by a column vector @ =(4 ,a,,K ,a,) , k=LK,K  We define the values

J -
d 'zkl(a.‘=f), where I(a,‘=j) represents the indicator variable for the event, "the kth attack used j

J
attackers in area i.” Therefore, s represents the number of times exactly j attackers have been used

against area i. We first determine the value of placing g defenders optimally in area n. Then we
define a recurrence relation on a value function v(p) that represents the expected payoff of placing p

defenders optimally iri areas i, i+l,., n. Then"1(8)is the solution to the original problem. The
boundary condition is given by

1
v"(q)=;ﬁ r’4.(p.q), ¢=0K ,g )
=0 >

which is the total expected payoff when the defender uses ¢ defenders in area n. This states that the optimal defender

strategy when only area aremains is to allocate all ¢ remaining defenders to that area. The recurrence for i € {LK ,n—1} js:

[ A 4
v.-(q)=;jgg}gq{p§r.- Ay(p,1)+v.»+.(q-1)} @

This is the expected payoff in area i plus the expected payoff generated by placing the remaining (¢-f) defenders optimally in
areas i+1,, n. The optimal defender allocation to area i is the value of j minimizing equation (2).

Similarly, for the attacker’s problem, we assume that K defenses have been observed so far, where

" k gk kNT
the kth defense is9 = (d',d;,K.d,) . The attacker wishes to allocate f forces over the n areas to

j_
maximize the expected payoff. Let = kI(d.‘=j) be the number of times j defenders are placed in

area i. Define "i(P)as the maximum possible expected payoff in areas i,K »" The boundary

conditions are:
g

1
w,(p)=— 5! 4,(p,9), p=0K,f

K= €)

and the recurrence is giver by:
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K i=0K,

w,(p) = max {Zs"A.(J q)+w, (p- 1)} @

The optimal solution for the attacker is represented by " (/) and the corresponding decisions j maximizing (4) for each
area.

Blotto games can be extended immediately to the case where the attacker possesses different
numbers of, say, two types of attacking units, fl and f2, and the defender also has a supply of, say,
two types of defending unit, gl and g2. The payoff function now depends on the number of attackers

and defenders of each type allocated to each area: 4 (P, P2,91:9:) . If we define rh as the number of

times j1 attackers of type 1 and j2 of type 2 have been used in area i, and similarly for 5; l’h, then our

v,(9:9,) == X Z Z A (pl,pz,ql,qz)

value functions are two-dimensional, with boundary conditions " 7120 py=0

®)

and

1 £, g
Wn(p.,pz)=;2 Zos;’"'%(p.,pz,q.,qz) ©)
i~V q,= ’

and recurrences

=1 Lys
v{9,,9,) K mm {Z z’ A(p, Py s )+, l(ql =Jpd— /z)} (7)

g e e

and

B 2
33 A o @)Wy —j,,pz—jz)}
=0 «

9=0¢=0

w(pl pz)-—' rg?xh {
5=0K.py

©®)
Clearly, the size of the static space grows with the product of the number of each type of attacker or defender. It is still

manageable with just a few types of attacker or defender.

3. Data Analysis and Results

3.1 Model Implementation

The FP model is implemented in MATLAB (Version 6.5). The ILP solution procedure is implemented
in GAMS (Revision 135, XA solver). Computations are done on a 1.5 GHz Intel Centrino-based laptop
computer with 512 MB of RAM. All computer code appears in Appendices A and B.
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3.2 Numerical Results

3.2.1 Rate of Convergence of FP
Define ‘gap(k) to be the difference between the upper and lower bounds on the value of the game at

FP iteration k. Consistent with earlier FP studies (Washburn, 2001), we find that the FP gap plotted
against number of iterations is approximately asymptotically linear on a log-log plot. That is, for large
enough k,
g~ Y o
log(gap(k)) = log(a) — blogk
where k is number of iterations and a and b are fitted constants. Limited numerical experimentation suggests that using a

least square fit and dropping first 100 iterations the intercept (log(a)) increases with increasing f or g, and the slope (-b)

increases (to approximately -1/2) with increasing n. These observations are illustrated in Figures 2, 3 and 4.

» strategies 5
Case | ' £ & » R . Stope Intercept Fm;;i;"
. Anacker Defender ) WUE-LB)
Al 50, 200, 10 12565671261 1.76081E+15 -0.48374 1.8887 3.8396
Az 25, 100, 10 52451256 4.26342E+12 -0.48378 1.5860 1.5260
A3 5...20, 10 2002 10015005 -0.48376 0.8887 0.3052
2.
A
K e e e
1.5 v -
AZ
t
5 a3
=
[
o B
o
1og(# harations)
Figure 2. With »# fixed, the slope remains constant and

the intercept increcases with fand g.

In Figure 2 we see the gap between the upper and lower bounds plotted against the number of
iterations of fictitious play, on log-log scale. The slope of the fitted line (from the column labeled
"slope” in the table ahove the plot) indicates the rate of convergence. Note that the slope is constant as

f and g increase, and n remains fixed.
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# purs strategies Siope Intercept Final CGa; Standard
Case n P
e Attacker Defbnder 54 ®) (UB-LB) Exror
Bl 30, 50, 30 S5.91E+16 3.33E+21 -0.517 1.8541 20374 0.0094
B2 ] 30. 50. 20 1.89E+13 4.63E+16 -0.543 1.8954 7824 0.0157
B3 30, 50, 15 1.15E+11 4.79E+13 -0.580 1.9463 .5238 0.0137
B4 | 30, 50, 10 2.12E+H08 1.26E+10 -0.588 1.8839 1999 0.0270
BS5 | 20, 50,,.2 46376 316251 -0.851 2.1746 0.4787 0.0469
B6 | 30,50, 2 31 51 -1.093 1.4431 0.0216 00194
2
1.8 _} a=-0.543(82)
- a=-0580(B3)
= g T, a=0 588 (84)
T ..,% /{
2 1 L >
£ A e :
B2 n=20 .
Predicted 82
o8 - 83 n=15
e TS S0 B3
B4 n=i10
— Prrecticted B4 Y
e
w5
o i
o o.s A 1.8 2 2.8 3
tog( # Iteration)
Figure 3. The best-fit slope increases with »z (f and g_fixed).

If we increase n for a fixed f and g, we see in Figure 3 that the slope increases, and appears to

approach a limit of -05 (Figure 4). This is consistent with conjectures of )/ Jk convergence of FP.

With [ and ¢ fixed, the asympiotic
slope ;ncreasss 10 appromately
0.5 as n becomes larpe.

log(Gap)

2.8

e Preclicted BY n=30
Predicted B2 n=20
- — Pregicied 83 n=15
- Predicted B4 n=10
as e Precicted 85 n=5
—— Predicted B n=2

iogi{ # terations)

Figure 4. Convergence of asymptotic slope

3.2.2 Elapsed Time per FP Iteration
We observe that for all tested values of f, g and n, the elapsed time per FP iteration is constant as

the number of FP iterations kincreases. This is illustrated in Figure 5 and occurs because the amount of
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FP data required to be manipulated and stored does not increase with k.

Travation || - 10006} 2000 32000 | 4000 | 3000 }. eooo.] . yoo0 . so0e | “poso | ioooo
r g »m i Elapand time (meed = - '
5.6, 10 2.4 4.6 6.8 9.0 11.2 133 15.5 177 199 222
20, 25, 30 243 | a8a| 736 967| 121.4] 1455] 1600 | 1938 217.6] 2420
40, 45, 50 217 | 1634 2452 326.4| a09.2| av0.a| s5722] 6531 | 7366| s17.4
300 - . .
800 - -e- -F=5,0=8, n=10 L
.
3 700 | |——=—F=20. g=25. n=30
E 500 i —-tf—f=40.'g=45, r?=50
5 500 i F e IR
b4 H : :
a 400
]
< 300 4
r—4 .
g 200 -
100 |
o - -~ PO S - - -4

1000 2000 3000 4000 S000 6000 7000 a000 8000 10000
Total FP Iterations, &

Figure 5. FP iterations vs. Elapsed time for 3 games

3.2.3 Comparisons with FP & ILP Procedure
Comparisons are made between the ILP and FP solution procedures. Three different payoff functions

are examined.

3.2.3.1 Convex Payoff Function
The convex payoff function is given by

A(x,,y,) = max(x, - y,,0)

Figure 6 shows how the two procedures performed.

¥ FP (k= 2000) ILP =
Run oz » Elapse Elapsed Falue of
o : Upper Lovwwer o :
. titne bt b Hmn
1 S N - 1.962 2.z208 2.179 0.029 0.10 2.2
2 .8 S 2.774 4.415 4.358 0.057 0.18 4.4
3 12, 16. 5 4.657 8.831 8.717 0.114 0.22 B.8
< 15,..20. S 5.668 11.039 10.896 0.143 0.19 11
s 30,40, 5 11,147 22.077 21.792 0.285 0.25 22
S 60, 80, 5 24.535 44.154 43.584 0.570 0.12 a4
7 120, 160,535 59.766 88.308 57.168 1.140 0.21 88
8 150, 200, .5 83.801 110.385 108.960 1.426 0.12 111
Q2 18
Em—m Elapsed thrme of 1L
23 oz Elepsed tme of FP 7 R
713 e P O FP : 42
& en 1.0
& o
£ =
: V.G &
g &
=
0o 39 &
20 0.4
RE-} R
i3 09
Figure 6. Comparison of FP and ILP procedures with convex payoff function
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3.2.3.2 Capacitated Payoff Function
The capacitated payoff function is

max(x, -,,0), x, -y, <cap

A5.)=1

cap, x,—y >cap,

where cap is the maximum possible péyoff. We note that the ILP objective function need not be either convex or concave

Figure 7 shows how the two procedures performed.

RP (& = 2000) 1LP
Run ” Hiapsed E1 d
L& ﬁx:f Upper | Lower | Gap Sopae Ugpper | Lower | Gap
1 3.3 5 1.743 2.208 2.179 | 0.029 0.180 2.200 2.200 0.00C
2 6. .8 5 2.704 2.958 2.872 | 0.086 0.100 3.120 2.800 0.320
3 12, .16. 5 4.697 3.935 3.767 | 0.168 0.100 | 4.114 3.800 0.314
4 15,20, 5 5.748 az252| 4078|0174 0.170 | 4.333 avco| 0333
3 30..4Q. 5 11.226 4.884 4619 | 0.265 0.190 5.143 4.200 0.943
[ 60..80.5 | 24.536 5350 | 4.960 ][ 0.389 1.420 | 5.807 4.200 1.607
7 120, 160, 5 59.946 5.622 5.130 | 0.492 62.380 6.250 4.200 2.050
8 150, 200, 5 82.278 5.713 5.144 | 0.570 102.170 6.338 4.091 2.247
120 zs
o Eiopse time of ILP
ermElspse time ot FP
100 ¢ —~—Gap of ILP 20
e Garp Of FP
gt
= 18
£
= 69 | §-
o
a 10
i <o
20 b ) Il n.s
0 o il 3 1 . 'l
1 2 3 4 5 6 7 -]
Run
Figure 7. Comparison of FP of ILP procedures with the capacitated payoff function

3.2.3.3 Binary Payoff Function
The binary payoff function is

0, x,-y <0

A(xhyi): 1 x._y>>0

As with the capacitated payoff function, the ILP in this case need not be either convex or concave. Figure 8 shows how the

two procedures performed.
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" FP (= 2000) . ILP
Run L egn Elepsed i . Elapsed
o P ;f g Upper | Lower Geap ﬁ’:f Upper | Lower | Gap
1 3,98 5 1.021 1.216 1.179 0.037 0.12 1.200 1.200 0.000
2 6..8. 5 2.805 1.477 1.407 0.070 0.17 1.600 1.400 0.200
3 12,36, 5 4.757 1.675 1.574 0.101 0.19 1.920 1.400 0.520
4 15,20, 5 5.668 1.721 1.618 0.103 Q.11 2.000 1.333 0.667
Ed 20,49, 5 11.186 1.850 1.694 0.156 0.20 | 2000 | 1.400 | 0.600
L3 61}, 8Q, 5 24.756 1.921 1.716 0.205 2.57 2.167 1.400 0.767
7 120, 160. 5 60.758 1.990 1.703 0.287 61 96 2.182 1.400 0.782
8 150, 200, 5 83.260 2.012 1.686 0.326 149 89 2.214 1.400 0.814
—— Hapse tire of ILP
160 enzzgy Bapse tireof FP 2.9
140
— 120
8
g 100 |
E ag
8
= 50 |
osa |
20
o “
b 2 3 4 5 6 7 -]
Run
Figure 8. Comparison of FP and ILP procedures with the binary payoff function

3.3 Conclusions
As has been observed in earlier FP studies the FP gap (the difference between the upper and lower

bounds or game value) as a function of number of FP iterations, k, is approximately
k)~ 4
gap(k)~ % ’

for large enough k.
The best-fit a increases with fand g, and the best-fit b decreases to approximately 1/2 with increasing n.
Because of efficiencies realized in the DP procedure used to solve the FP subproblems, the computation time required for
each FP iteration is approximately constant as the number of FP iterations increases, for fixed £, g and n.

For the convex payoff function tested, the ILP formulation solved with GAMS was faster and more
accurate than the FP procedure.

For the non-convex payoff functions tested, the FP procedure was more competitive and sometimes

significantly outperformed than ILP procedure.

4. Conclusions and Further Study

We propose a new efficient fictitious play (FP) procedure to solve two-person zero-sum Blotto
games. The algorithm uses dynamic programming (DP) to solve the FP subproblems at each iteration.
By representing intermediate mixed strategies through marginal distributions are keep the state space of

the DP manageable and independent of the number of iterations. Although our experiments considered
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one type of attacker and one type of defender, we indicate how to generalize this procedure to cases
with more than one type of attacker or defender (or both).

During this study, we identified other topics for further investigations. The first is to investigate
generalizations of Blotto games in which defenders can be placed in such a way as to defend multiple
areas at once. This is closer to the real situation with missile defense. The second is to explore the
issue of playability in the ILP formulations. Qur proposed playability constraint is currently too
restrictive. we have provided examples in which the optimal solution to the ILP, with the playability
constraint, is not equal to the value of the game Further research should explore less restrictive,
alternate formulations of playability constraints. It is possible (although unlikely) that less restrictive
playability constraints would also yield more efficiently solvable ILP, making that approach competitive

with the DP-based procedure for larger problems.
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