• Title/Summary/Keyword: Optimal weight function

Search Result 253, Processing Time 0.024 seconds

Optimum Design of the Agricultural Support and Binder for Stretching Device (가중치법을 이용한 농작물 지지대 및 결속장치의 최적설계)

  • Lee, Man-Gi;Kim, Jin-Ho;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, the optimal design for the support and the binding device for the protection of crops for the maximum allowable stress of the shape necessary to minimize volume has been proposed. Optimization of the support and the binding device for the crops should be designed to support businesses in terms of profit, in part to reduce the material, and to profit from the ease and speed of working that part of the farmers. We used CATIA for the mechanical design and the ANSYS program for the structural analysis. Additionally, the optimization was performed by PIAnO with seven design variables for the binding device and three parameters for the support. The weight method using a multi-objective function was also determined by the Pareto optimal solution. The volume of the binding device in the optimum design result was found to be reduced by 16%, from $2.278e-005m^3to1.912e-005m^3$. From the result, we confirmed the effectiveness of the design method proposed as a multi-objective function optimization problem.

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.

Structural Topology Design Using Compliance Pattern Based Genetic Algorithm (컴플라이언스 패턴 기반 유전자 알고리즘을 이용한 구조물 위상설계)

  • Park, Young-Oh;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.786-792
    • /
    • 2009
  • Topology optimization is to find the optimal material distribution of the specified design domain minimizing the objective function while satisfying the design constraints. Since the genetic algorithm (GA) has its advantage of locating global optimum with high probability, it has been applied to the topology optimization. To guarantee the structural connectivity, the concept of compliance pattern is proposed and to improve the convergence rate, small number of population size and variable probability in genetic operators are incorporated into GA. The rank sum weight method is applied to formulate the fitness function consisting of compliance, volume, connectivity and checkerboard pattern. To substantiate the proposed method design examples in the previous works are compared with respect to the number of function evaluation and objective function value. The comparative study shows that the compliance pattern based GA results in the reduction of computational cost to obtain the reasonable structural topology.

Variable selection in censored kernel regression

  • Choi, Kook-Lyeol;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.201-209
    • /
    • 2013
  • For censored regression, it is often the case that some input variables are not important, while some input variables are more important than others. We propose a novel algorithm for selecting such important input variables for censored kernel regression, which is based on the penalized regression with the weighted quadratic loss function for the censored data, where the weight is computed from the empirical survival function of the censoring variable. We employ the weighted version of ANOVA decomposition kernels to choose optimal subset of important input variables. Experimental results are then presented which indicate the performance of the proposed variable selection method.

Optimal Thickness Design of Ellipsoidal and Tori-Spherical Pressure Vessel Domes (타원형 및 토리-구형 압력용기도옴의 두께 최적화설계)

  • 이영신;김영완;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.707-715
    • /
    • 1994
  • This study presents thickness optimization for the pressure vessel domes subject to internal pressure and axial force simultaneously. The considered typical pressure vessel domes are ellipsoidal and tori-spherical domes with skirt and nozzle part. These pressure vessel domes under loading have higher stress concentration on geometric discontinuity parts. Therefore, thickness optimization of axi-symmetric pressure vessel domes is essentially concerned on minimizing this stress concentration. The objective function is minimization of weight of pressure vessel dome. The design variable is thickness of dome and cylinder. Considered constraint is Von Mises equivalent stress. In the optimization procedure, ANSYS code is used. The equivalent and hoop stress of original shape domes are compared with those of optimal shape domes. And optimal thicknesses for pressure vessel domes are presented.

Optimal Design of a Transformer Core Using DEAS (DEAS를 이용한 변압기 코아의 최적설계)

  • Kim, Tae-Gyu;Kim, Jong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1055-1063
    • /
    • 2007
  • This paper introduces an optimal design technique for a 250-watt isolation transformer using an optimization method, dynamic encoding algorithm for searches (DEAS). Although the optimal design technique for transformers dates back to 1970s and various optimization methods have been developed so far, literature concerning global optimization for transformer core design is rarely found against its importance. In this paper, core configuration of the isolation transformer whose performance is computed by complex mathematical steps is optimized with DEAS. The optimization result confirms that DEAS can be successfully employed to transformer core design for various performance specifications only by adjusting weight factors in cost function.

Modeling, simulation and control strategy for the fuel cell process (모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

Optimal Design of High-Speed Railway Bridges Considering Static and Dynamic Constraints (정적 및 동적 제약조건을 고려한 고속철도 교량의 최적화 설계)

  • 안예준;신영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-142
    • /
    • 1999
  • Plate girder bridges for tile Korean high-speed railway are optimally designed. Static and dynamic constraints are all considered. The design variables are the thicknesses and the lengths of the plates that are used to form I-shaped main girders with variable cross-sections. And the objective function is tile steel weight of a main girder. A C++ based design program is developed; this program interfaces with a FORTRAN based optimization program ADS. From the results of optimal design for various span lengths, it is observed that the deck vertical acceleration is one of the most important constraints in a special range of tile span length. Front a parametric study, sensitivity of the optimal design to static as well as dynamic constraints are presented.

  • PDF

Optimal Design of Trusses Using Advanced Analysis and Genetic Algorithm (고등해석과 유전자 알고리즘을 이용한 트러스 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.161-167
    • /
    • 2008
  • In this paper, the optimal design of trusses using advanced analysis and genetic algorithm is performed. An advanced analysis takes into account geometric nonlinearity and material nonlinearity. The micro genetic algorithm is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities and displacement requirement. The effectiveness of the proposed method is verified by comparing the results of the proposed method with those of other method.

A Study on the Perforating Process of the Muffer Tube using FEM

  • Han Kyu-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.275-280
    • /
    • 2005
  • Recently there has been a growing interest in the design and manufacturing of the muffler tube due to the strict environment regulations, A muffler is an important part used to reduce noise and to purify exhaust gas in cars and heavy equipment. The shape of the muffler tube and the number of the tube hole has been made variously according to the weight and function of the car. The perforating technique of the muffler tube has a great influence on the manufacturing cost. In this study, metal forming analysis has been carried out to investigate the perforating process for the muffler tube and predict an optimal forming conditions of the muffler tube, Also its simulation results by the finite element method were reflected to the die design and the manufacturing system for the muffler tube. The perforating process is performed in the longitudinal direction of the tube. According to the simulation results, when the shear angle of punch was similar to the tube curvature, the optimal shape was obtained. Also when the clearance of die was 0.2mm, the burr was minimized and optimal shear section was obtained.