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Abstract

For censored regression, it is often the case that some input variables are not impor-
tant, while some input variables are more important than others. We propose a novel
algorithm for selecting such important input variables for censored kernel regression,
which is based on the penalized regression with the weighted quadratic loss function for
the censored data, where the weight is computed from the empirical survival function
of the censoring variable. We employ the weighted version of ANOVA decomposition
kernels to choose optimal subset of important input variables. Experimental results
are then presented which indicate the performance of the proposed variable selection
method.

Keywords: ANOVA decomposition kernel, censored data, generalized cross validation
function, kernel function, variable selection.

1. Introduction

Suykens and Vanderwalle (1999) proposed LS-SVM, which is a least squares version of
support vector machine (SVM) originally introduced by Vapnik (1995, 1998). The solution is
given by a linear system instead of a quadratic programming problem. The fact that LS-SVM
has explicit primal-dual formulations has lots of advantages. Kernel tricks are used in SVM
and LS-SVM to treat the nonlinear relation between input variables and output variable.
See Cho et al. (2010), Hwang (2010a, 2010b), Shim and Lee (2009) for the reference.

The censored regression model and the least squares method to accommodate the cen-
sored data seem appealing since they are familiar and well understood. Koul et al. (1981)
gave a simple least squares type estimation procedure in the censored regression model with
the weighted observations and also showed the consistency and asymptotic normality of the
estimator. Zhou (1992) proposed an M-estimator of the regression parameter of censored
regression model based on the weights proposed by Koul et al. (1981). Orbe et al. (2003)
proposed the estimation procedure of censored regression model where estimators of regres-
sion parameters and nonlinear function are obtained by minimizing the penalized weighted
least squares objective function through iterative method. They also proposed the procedure
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to generate the bootstrap resamples to obtain the uncertainty measures of estimators. Jin et
al. (2003) proposed the estimation procedure where regression parameter estimates of cen-
sored regression model are obtained from non-monotone estimating equations based on the
weighted log-rank statistics. The estimating equations are solved through iterative method
with Gehan (1965)-type estimate as the initial value. Ghosh and Ghosal (2006) proposed the
estimation procedure based on a nonparametric Bayesian approach which uses a Dirichlet
prior for the mixture of Weibull distribution in the censored regression model, where Markov
Chain Monte Carlo method (Brooks, 1998) is used to obtain the marginal posterior distri-
bution of regression parameters. Shim et al. (2011) proposed a semiparametric LS-SVM for
the censored data using weights which Koul et al. (1981) proposed.

In linear regression models the stepwise regression is popular in which the selection of
input variables is carried out by an automatic procedure (Draper and Smith, 1981). Many
variable selection techniques for linear regression models have been extended to the context
of survival models, including the best-subset selection, stepwise selection, and Bootstrap
procedures (Sauerbrei and Schumacher, 1992). Recently the Lasso (least absolute shrinkage
and selection operator; Tibshirani, 1997) has been proposed for Cox proportional hazards
model (Cox, 1972). By shrinking some regression parameters to zero, this method provides
the selection of important variables and the estimation of regression parameters simultane-
ously. Huang et al. (2005) proposed the regularization and variable selection approach using
Lasso (Tibshirani, 1996). Hu and Rao (2010) proposed a weighted least squares method with
censoring constraints and sparse penalization to fit censored regression models with high-
dimensional covariates. There are lots of literatures in studies of variable selection: Guyon
et al. (2002), Tibshirani et al. (2002), Koo et al. (2006). Guyon et al. (2002) developed SVM
with a recursive features elimination algorithm and Tibshirani et al. (2002) developed the
prediction analysis of microarrays method based upon an enhancement of the simple nearest
prototype classifier. Recently, Shim et al. (2009) proposed the marker genes selection by the
supervised weighted kernel clustering and SVM.

In this paper we propose a variable selection method in censored kernel regression, which
uses the weighted ANOVA decompostion kernel. From the quadratic programming problem
we obtain weights whose magnitudes imply the importance of variables on regression. The
rest of paper is organized as follows. In Section 2 we present the censored kernel regression
and model selection methods. In Section 3 we propose the variable selection method using
the weighted ANOVA decompostion kernel. In Section 4 we perform the numerical studies
with the simulated nonlinear dataset and the partially linear real dataset. In Section 5 we
give the concluding remarks.

2. Censored kernel regression

In this paper we set z; € R? be the input vector and ¢; be the response variable (survival
time) corresponding to input vector, @; or transformation on it, where i = 1,--- n. In
fact we cannot observe t;’s but the observed variable, y; = min(¢;,¢;) and 6; = I(¢; < ¢;),
where I(-) denotes the indicator function and ¢; is the censoring variable corresponding to
x; fori=1,--- n. ¢;’s are assumed to be independently distributed with unknown survival
distribution functions. In most practical cases survival distribution function of ¢;’s, GG, is not
known and needs to be estimated by the Kaplan-Meier (1958) estimator or its variation. The
problem considered here is the estimation of m(«;), the regression function of the response
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variable given @;, based on (81,41, 1), ", (0n, Yn, Tn). Buckley and James (1979) defined
the pseudo-response variable

Y =il + E(ts|ti > ys, ) (1 — 5;). (2.1)

They showed E(y}|x;) = E(t;|x;) and proposed the iteration method to estimate the re-
gression parameters. Koul et al. (1981) defined new observable responses y; as yf = w;y;
with
d;
U = ——, 2.2
"= o) 22
and showed y; has the same mean as t; and thus follows the same linear model as ¢; does.
Here, G, the Kaplan-Meier estimates (Kaplan and Meier, 1958) of survival distribution
function G of ¢;’s can be obtained as,

n—1
- (' ify <y
G(y) = i:y}i_)léy n—i+1 e

0 otherwise

(2.3)

where (y(;),d(;)) is (yi,d;) ordered on y; for i = 1,--- ,n. Koul et al. (1981) proposed the
ordinary least squares regression of y; on ;. Zhou (1992) proposed the weighted least

squares regression of y; on x; with u; so that (3,b) in (2.4) can be seen as the minimizer of
the objective function as follows:

1 n
§Zul(yZ —x3 —b)2 (2.4)
i=1

We counsider the nonlinear regression case, in which the regression function of x;, m(x;),
can be regarded as a nonlinear function of input variables,

m(z) = w'¢(x) + b.

Here b is a bias term and w € R% is a weight vector corresponding to the feature mapping
function ¢(-) : R* — R which maps the input space to the higher dimensional feature
space where the dimension dy is defined in an implicit way. An inner product in feature space
has an equivalent kernel function in input space, ¢(xx)'¢(x;) = K (xk, ;) (Mercer, 1909).
Using kernel tricks in SVM and LS-SVM, a penalized least squares optimization problem
inspired by (2.4) can be considered with a penalty parameter v > 0 as follows:
1 gl /
min iaKoH— §(y—Ka—b) Uly— Ka—b), (2.5)
where K = K(x,x), U is a diagonal matrix of u;’s and a is an n x 1 vector such that
m(x) = Ka + b. The estimates of (a, b) can be obtained from the linear equations which
are results of differentiation of (2.5) with respect to («, b),

KUK +1/y KU1l\[(a\ (KU
< VUK 1’U1) <b> - (1’U>y' (2:6)
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Solving the linear equation (2.6), the estimated regression function given x, is obtained as
m(z,) = K(z,,z)a + b, (2.7)
which can be seen as the linear combination of y as follows:

ite) = (Kaea) 0 (K fgi)l (1) (28)

For the partially linear case where the input variables can be divided into two groups - a
group, x1, of variables which are related to the regression function linearly and the other
group, a2, of variables which are related to the regression function nonlinearly, we can still
use (2.8) by setting K = x1x} + K(z4, x2). Then the estimated regression function given
(x1;, Ty,) is obtained as

(@1, Tgy) = (€21 + K (20, 22)) G + b. (2.9)

The functional structure of censored kernel regression is characterized by hyper -parameters,
the penalty parameter v and the kernel parameters. To select the optimal values of hyper-
parameters of the censored kernel regression, we define a cross validation function as follows:

cv(0) = :LZ wi(yi — s (9))%, (2.10)

where 0 is the set of hyper-parameters and ﬁlg_i) (0) is the predicted value of m(x;) ob-

tained from data without 7 th observation. Since for each candidates of hyper-parameters,
fhgﬂ)(ﬂ) for i = 1,--- ,n, should be evaluated, selecting parameters using CV function is
computationally formidable.

By leaving-out-one lemma (Kimeldorf and Wahba, 1991) and the first order Taylor ex-

pansion, we have a ordinary cross validation (OCV) function (Shim et al., 2011),
1 7:(0)\”
Yi —my
ocv() =— i =——— 2.11
013w () 21
where s;; is the ¢ th diagonal element of S which is the hat matrix such that

—1
— KUK +1 KU1 KU

By replacing (1 — s;;/n) with 1 — trace(S)/n we have a generalized cross validation (GCV)
function,

n'> ui(y; — i(6))?
GCV(9) = Za—tmce(S))Q . (2.12)
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3. Variable selection

The ANOVA decomposition kernels are inspired by ANOVA in Statistics, which can be
seen as the sum of kernels constructed by different subsets of variables (Vapnik, 1998).
The ANOVA decomposition kernel has two main advantages (Saunders et al., 1998) - (i)
improving predictive performance by considering the different subsets as group together like
variables (ii) avoiding overfitting training data by only considering some subsets of input
variables.

We assume that p is the prespecified number of input variables to be selected then the
ANOVA decomposition kernel is defined as follows:

dp
Ky =) K(wg, ), (3.1)
k=1
where x.j, is the n x p submatrix of « consisting of the k th subset of I, = {(k1,--- , kp)|1 <

k1 <---<k,<d}andd, = i is the size of Ij,.
In this paperwe modify the ANOVA decompostion kernel into the weighted version such
as

d

Ky = ZU;CK(JI,/C,:II,/C), (32)
k=1

where x . is the k th column of x, v > 0, 22:1 v = 1 and vy is a weight representing
the influence of k th input variable on the response. The important input variables can be
selected according to magnitude of vys such that the input variables corresponding to p
largest v} s are selected as p most important input variables.

To select the prespecified number of input variables we need to find vy’s first. But vg’s
cannot be obtained in a step but by the iterative procedure since (c,b) contains vg. The
variable selection procedure for censored kernel regression can be carried out as follows:

(i) With K = K(, «) find the optimal values of hyper-parameters from (2.11) and (a, b)
from the linear equation (2.6).

(ii) With (e, b), find v = (v, -+ ,vq)’ from a quadratic programming problem,
min %’U/A/UA’U — (YUA-b1I'UA - 2170//1)11 (3.3)
subject to
0<v<1landlv=1,
where A = (KL, -+, K4a) is the n xd matrix with K% = K(z 1, x 1). The quadratic

programming problem (3.3) is obtained by expressing the following optimal problem
with respect to vy’s,

1
min §a’KAa + %(y —Kaa—01)U(y — Kaa — b1)
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subject to

0<wv<1landlv=1.

(iii) Find (e, b) from (2.6) by replacing K with K4 which is updated with newly obtained
vg’s in (ii) as (3.2).

(iv) Tterate (i) and (iii) until |[o®) — v®*+D|| converges.

4. Numerical studies

We illustrate the performance of the proposed method for the variable selection through
the simulated data sets and the real data set. We indicate the performance of the proposed
method by showing weighted sums of squared residuals (Zhou, 1998).

Example 4.1 In this example we generate 200 data sets to indicate the performance of
variable selection by showing that the proposed method agrees with the exhaustive search
using the censored kernel regression on selection of two true important input variables. For
each ¢ = 1,---,100, x;1, - ,2;6 are generated from a uniform distribution, U(0,1) and
(t,c)’s are generated as follows:

t, =1+ exp(;vil + l‘i4) + €, G = 1.2+ exp(mil + {Ei4) + €c;, 1=1,---,100,

where €;,’s and ¢, ’s are generated from normal distribution, N(0,0.12). From 200 data sets
the average and the standard error of the censoring percentage were obtained as 8.3% and
0.2%, respectively. We consider the nonlinear censored regression as follows:

m(z;) = w'o(xi) + D,

where @; = (14,2, -+ ,6;). For each data set, a radial basis function kernel, K (x;, xx) =
exp(—( 1/0%)||z; — xy||?), is applied to the censored kernel regression and the optimal
values of hyper-parameters (7, 02) are chosen from GCV function in (2.12). Table 4.1 shows
the number of times selected by the proposed method as the most and the secondly most
important input variables in 200 data sets. For the exhaustive search using the censored
kernel regression, we use (g) =15 sets of two input variables shown in the first column heading
of Table 4.3. We divided each dataset into 15 sub-data sets according to 15 sets of response,
§; = I(t; < ¢;) and two input variables such as {y;, 8;, zi1, zi2} 299, {vi, 6i, i1, iz} 199, -+,
{yi, 8, wis, wis} 129, and obtained 15 weighted sums of squared residuals (wSSR ; Zhou,
1998) such that for example,

wSSR(1,2) = Zui(yi — (i1, Ti2))?,
i1

where (11, 2;2) is the regression function of x; estimated from {y;,d;, 71, 22} 12. We
computed the averages of 200 wSSR’s for each set of two input variables, which are shown
in Table 4.3. By the proposed method we obtained averages of weights representing the
influence of each input variable on the response in 200 dataset, which are shown in Table
4.2. From the tables we can see that the proposed method and the exhaustive search using
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the censored kernel regression agree on the variable selection of (1, x4) as the two most
important input variables. We also compute wSSR using six input variables for each data
set, whose average and standard error are obtained as 1.4223 and 0.0197, respectively, which
is a little smaller than wSSR(1,4) =1.7462 in Table 4.3.

Table 4.1 Results of Example 4.1 by proposed method

variable () 1 2 3 4 5 6
first 99 2 3 88 3 5
second 25 38 37 29 39 32

Table 4.2 Results of Example 4.1 by proposed method (standard error in parenthesis)
variable () 1 2 3 4 5 6
0.2376 0.1316 0.1213 0.2409 0.1508 0.1149

(0.0091) (0.0163) (0.0157) (0.0095) (0.0189) (0.0160)

weight

Table 4.3 Results of Example 4.1 by exhaustive search (standard error in parenthesis)

variables (i, j) average of wSSR variables (i, j) average of wSSR
@, 2) 75.6055 (0.8255) 2, 6) 147.0063 (1.6852)
(1, 3) 75.3725 (0.7839) (3, 4) 75.0088 (0.7725)
(1, 4) 1.7462 (0.0184) (3, 5 147.3635 (1.7096)
(1,5) 75.3492 (0.7855) (3, 6) 147.0576 (1.7475)
(1, 6) 75.6332 (0.8110) (4, 5) 75.0860 (0.7753)
(2, 3) 147.2786 (1.7989) (4, 6) 75.6268 (0.7578)
(2, 4) 75.6595 (0.7997) (5, 6) 146.4083 (1.6820)
(2, 5) 147.2902 (1.7703)

Example 4.2 In this example we apply the proposed method to a study on multiple
myeloma reported by Krall et al. (1975). Among a total of 65 patients who were treated
with alkylating agents, 48 died during the study and 17 survived. The observed survival
times were measured in months. There are nine input variables, which are described in
Table 4.4. We consider the nonlinear censored regression as follows:

m(z;) = w'é(z;) +b,

where x; = (x14,z2i,- -+ ,x9;) = (Platelet, Frac, ---, SCalc). Using the radial basis kernel
the regression function can be rewritten as follows:

m(x;) = K(x;,x)a +b.

A in (3.3) becomes A = (Kia,K%a, - ,K%a), where KX = K(x,x ;) and x
is a 65 x 1 vector of the k th input variable. A radial basis function kernel is applied
in the censored kernel regression and the optimal values of hyper-parameters are cho-
sen from GCV function in (2.12) as (v,0?) =(700, 4). By the proposed method we ob-
tained a weight vector representing the influence of each input variable on the response as
v =(0,0,0,0.2747,0.4721,0,0.0077,0.2454, 0)’, which implies that the most important input

variables selected are rearranged in the ascending order as Age-HGB-Protein-LogPBM. For
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the exhaustive search using the censored kernel regression, we use (Z) sets of k = 2,3,4 in-
put variables, wSSR(Age, HGB), wSSR(Age, HGB, Protein), wSSR(Age, HGB, Protein,
logPBM), are obtained as 0.0363, 0.005, 0.0001, respectively. We obtained wSSR with all
input variables as 0.0001, which is same as wSSR(Age, HGB, Protein,logPBM) and im-
plies that (Age, HGB, Protein, logPBM) are the most important input variables when we
use the censored kernel regression.

Table 4.4 Input variables of Myeloma data reported by Krall et al. (1975)

variable description type
Platelet platelets at diagnosis: O=abnormal, 1=normal binary
Frac fractures at diagnosis: 0=none, 1=present binary
logBUN log(BUN) at diagnosis continuous
HGB hemoglobin at diagnosis continuous
Age age at diagnosis in years continuous
logWBC log(WBC) at diagnosis continuous
logPBM log(PBM) at diagnosis continuous
Protein proteinuria at diagnosis continuous
SCalc serum calcium at diagnosis continuous

*BUN: blood urea nitrogen WBC: white blood cells in the blood
PBM: plasma cells in bone marrow

5. Conclusions

In this paper, we dealt with the variable selection method in the censored kernel regression.
The weights representing the influence of input variables are obtained by minimizing the
quadratic programming problem composed of the weighted ANOVA decompostion kernels.
The proposed method is reliable in the point that which agree with the exhaustive search
in the simulated data. Through the examples we showed that the proposed method derives
the good solutions to the variable selection in the censored kernel regression.
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