• Title/Summary/Keyword: Optimal weight function

Search Result 253, Processing Time 0.04 seconds

Failure Maps and Derivation of Optimal Design Parameters for a Quasi-Kagome Truss Sandwich Panel Subjected to Bending Load (굽힘하중을 받는 준 카고메 트러스 샌드위치 판재의 파손선도와 최적설계변수의 도출)

  • Lim, Chai-Hong;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.943-950
    • /
    • 2007
  • A new metallic sandwich panel with a quasi-Kagome truss core subjected to bending load has been analyzed. First, equations of the failure loads corresponding to the eight failure modes are presented. Then, non-dimensional forms of the equations are derived as functions of three geometric variables, one material parameter (yield strain), one load index and one weight index. Failure maps are presented for a given weight index. By using the dimensionless forms of equations as the design constraints, two kinds of optimization are performed. One is based on the weight, that is, the objective function, namely, the dimensionless load is to be maximized for a given weight. Another is based on the load, that is, the dimensionless weight is to be minimized for a given load. The results of the two optimization processes are found to agree each other. The optimized geometric variables are derived as a function of given weights or failure loads. The performance of the quasi-Kagome truss as the core of a sandwich panel is evaluated by comparison with those of honeycomb cored and octet truss cored panels.

Development of Multi-Attribute Decision Making System for Conceptual Design of Light-Weight Rolling Stock (철도차량 경량화 개념설계를 위한 다속성 의사결정 시스템 설계)

  • Kim, Hee-Wook;Kim, Jong-Woon;Shin, Sung-Ryoung;Jeong, Hyeon-Seung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2973-2978
    • /
    • 2011
  • In this paper, a system is developed to support multi-attribute decision making for designing light-weight of rolling stock. Conceptual design of light-weight of rolling stock does not only mean reducing weight. It should be considered about some attributes like safety and environment, technology, etc. So technical attributes and needs of customers, manufacturers and management companies, passengers, should be reflected and qualitative evaluation methods are required. AHP(Analytical Hierarchy Process) and QFD(Quality Function Deployment) are used to decide weighted values of technical attributes and needs from customers. Finally, Alternatives for light-weight of rolling stock that are composed of alternatives of equipment are evaluated by TOPSIS(Technique for Order Preference by Similarity to Ideal Solution). A series of this process are made as a S/W. It could suggest a near-optimal alternative for light-weight of rolling stock.

  • PDF

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF

Statistical Analysis of Irrigation Reservoir Water Supply Index (관개용저수지 용수공급지수(IRWSI)의 확률통계 분석)

  • 김선주;이광야;강상진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.58-66
    • /
    • 1998
  • Irrigation Reservoir Water Supply Index(IRWSI), which can be applied to the effective supply and management of the irrigation water resources, was developed. IRWSI was formulated as resealed nonexceedance probabilities of two hydrologic components : reservoir storage ratio and precipitation. To generate nonexceedance probability of hydrologic component, it was important to define the optimal one among the various probability distribution function in the state of nature. To define an optimal probability distribution, in this study, four types of probability distribution function were tested by the K-S fitting, and for the calculation of IRWSI, reservoir storage ratio(%) and precipitation used Normal distribution & Gamma distribution, respectively. In this study, the weight coefficients of a and b for each hydrologic component, which is precipitation and reservoir storage ratio, was decided as 0.8 and 0.2, respectively. While some studies changed weight coefficients according to the size of basin area, this study used same values without considering that. From the analysis of drought characteristics, it was found that the IRWSI was sensitive to the size of irrigation area rather than the size of basin area, and the south-eastern region of Korea had been suffered from severe drought damage.

  • PDF

Selection of Optimal Vegetation Indices and Regression Model for Estimation of Rice Growth Using UAV Aerial Images

  • Lee, Kyung-Do;Park, Chan-Won;So, Kyu-Ho;Na, Sang-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.409-421
    • /
    • 2017
  • Recently Unmanned Aerial Vehicle (UAV) technology offers new opportunities for assessing crop growth condition using UAV imagery. The objective of this study was to select optimal vegetation indices and regression model for estimating of rice growth using UAV images. This study was conducted using a fixed-wing UAV (Model : Ebee) with Cannon S110 and Cannon IXUS camera during farming season in 2016 on the experiment field of National Institute of Crop Science. Before heading stage of rice, there were strong relationships between rice growth parameters (plant height, dry weight and LAI (Leaf Area Index)) and NDVI (Normalized Difference Vegetation Index) using natural exponential function ($R{\geq}0.97$). After heading stage, there were strong relationships between rice dry weight and NDVI, gNDVI (green NDVI), RVI (Ratio Vegetation Index), CI-G (Chlorophyll Index-Green) using quadratic function ($R{\leq}-0.98$). There were no apparent relationships between rice growth parameters and vegetation indices using only Red-Green-Blue band images.

Optimal dimension design of a hatch cover for lightening a bulk carrier

  • Um, Tae-Sub;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • According to the increase of the operating cost and material cost of a ship due to the change of international oil price, a demand for the lightening of the ship weight is being made from various parties such as shipping companies, ship owners, and shipyards. To satisfy such demand, many studies for a light ship are being made. As one of them, an optimal design method of an existing hull structure, that is, a method for lightening the ship weight based on the optimization technique was proposed in this study. For this, we selected a hatch cover of a bulk carrier as an optimization target and formulated an optimization problem in order to determine optimal principal dimensions of the hatch cover for lightening the bulk carrier. Some dimensions representing the shape of the hatch cover were selected as design variables and some design considerations related to the maximum stress, maximum deflection, and geometry of the hatch cover were selected as constraints. In addition, the minimization of the weight of the hatch cover was selected as an objective function. To solve this optimization problem, we developed an optimization program based on the Sequential Quadratic Programming (SQP) using C++ programming language. To evaluate the applicability of the developed program, it was applied to a problem for finding optimal principal dimensions of the hatch cover of a deadweight 180,000 ton bulk carrier. The result shows that the developed program can decrease the hatch cover's weight by about 8.5%. Thus, this study will be able to contribute to make energy saving and environment-friendly ship in shipyard.

Platen Weight Reduction Design of Extruder Using Topology Optimization Design (위상최적설계를 활용한 압출기의 플라텐 경량화 설계)

  • Kim, D.Y.;Kim, J.W.;Lee, J.I.;Jo, A.R.;Lee, S.Y.;Jeong, M.S.;Ko, D.C.;Jang, J.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.302-308
    • /
    • 2022
  • In this study, the weight of the platen was reduced using the structural strength analysis and topology optimization design of the extruder by finite element analysis. The main components of the extruder such as the stem and billet, were modeled, and the maximum stress and safety factor were verified through structural strength analysis. Based on the results of the structural strength analysis, the optimal phase that satisfies the limitation given to the design area of the structure and maximizes or minimizes the objective function was obtained through a numerical method. The platen was redesigned with a phase-optimal shape, the weight was reduced by 40% (from the initial weight of 11.1 tons to 6.6 tons), and the maximum stress was 147.49 MPa safety factor of 1.86.

Development the Optimal Size System and Application for Children's Ready-to-wear -Based on Elementary School Boys- (아동복의 최적 사이즈 시스템 개발과 활용 -학령기 남아를 중심으로-)

  • Kim, Seon-Young;Nam, Yun-Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.364-375
    • /
    • 2007
  • The propose of this study is to develop the optimal sizing system of ready-to-wear far elementary school boys using a newly invented statistical technique. The body measurements was classified by the method that equalizes the distribution of the subjects using the probability density function, to theoretically systemize a method to determine a size range of ready-to-wear for elementary school boys between 7 to 12 yeiws old. The results were as follows: 1. Height group includes 9 types of heights: 115, 120, 125, 130, 135, 140, 145, 150 and 155. 2. In the case of short children's groups, the variance in bust girth and waist girth is narrow. The people cluster together around the average. The size deviation of ready-to-wear is small. 3. In the case of tall children's groups, the variance in bust girth and waist girth is wide. The people spread widely around the average. The size deviation of ready-to-wear is large. 4. The optimal size system is suggested considering the weight of growth exponent of children according to their respective ages. Clothing companies can selectively choose sizes that meet the target of their brands. 5. It suggests the body sizes chart, which based on their means by the middle size children for each height group, so that clothing companies make use of it.

Alternative accuracy for multiple ROC analysis

  • Hong, Chong Sun;Wu, Zhi Qiang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1521-1530
    • /
    • 2014
  • The ROC analysis is considered for multiple class diagnosis. There exist many criteria to find optimal thresholds and measure the accuracy of diagnostic tests for k dimensional ROC analysis. In this paper, we proposed a diagnostic accuracy measure called the correct classification simple rate, which is defined as the summation of true rates for each classification distribution and expressed as a function of summation of sequential true rates for two consecutive distributions. This measure does not weight accuracy across categories by the category prevalence and is comparable across populations for multiple class diagnosis. It is found that this accuracy measure does not only have a relationship with Kolmogorov - Smirnov statistics, but also can be represented as a linear function of some optimal threshold criteria. With these facts, the suggested measure could be applied to test for comparing multiple distributions.

Optimal Design of a Levitation Magnet for an OLED System by using Evolution Strategy (진화론적 방법을 이용한 OLED 시스템용 부상용 전자석의 최적 설계)

  • Lim, Hyoung-Woo;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.541-546
    • /
    • 2006
  • In a levitation magnet system with large air gap, numerical method is needed because analytic method cannot consider the leakage flux properly. This paper conducted an optimal design of a levitation magnet system with large air gap which was used for an OLED system, where evolution strategy was adopted for optimal design algorithm. Levitation forces near the initial design were calculated first by using finite element method to reduce the computation time. During the optimization process, levitation forces of arbitrary dimension were obtained using the interpolation of the levitation forces which were calculated previously Weight of the maget system was chosen as the object function and it was used minimized.