• 제목/요약/키워드: Optimal sliding mode control

검색결과 110건 처리시간 0.047초

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • 제2권3호
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.

Novel Discrete Optimal Sliding Mode Control

  • Park, Seung-Kyu;Ahn, Ho-Kyun;Kim, Min-Chan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.22.4-22
    • /
    • 2001
  • In this paper, the discrete optimal control is made to have the robust property of sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is desappear in this method.

  • PDF

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V.;Shimjith, S.R.;Tiwari, A.P.
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.552-559
    • /
    • 2020
  • This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

A Study on the Optimal Model Following Sliding Mode Control

  • Kim, Min-Chan;Park, Seung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.38.4-38
    • /
    • 2001
  • In this paper, a novel model following sliding mode control is proposed by using a novel sliding mode with virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is combined with the optimal controller. Its design is based on the argument system whose dynamics have one higher order than that of the original system. The reaching phase is eliminated by using an initial virtual state that makes the initial sliding function equal to zero.

  • PDF

가상 상태를 이용한 시간 지연 시스템의 슬라이딩 모드 제어 (Sliding Mode Control for Time-delay System using Virtual State)

  • 송영삼;권성하;박승규;오도창;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.341-341
    • /
    • 2000
  • This paper presents a sliding mode control(SMC) design method for single input linear systems with uncertainties and time delay in the state. We define a sliding surface for the augmented system with a virtual state which is defined from the nominal system. We make a virtual state from optimal control input using LOR(Linear Quadratic Regulator) and the states of the nominal system. We construct a controller that combines SMC with optimal controller. The proposed sliding mode controller stabilizes on the overall closed-loop system.

  • PDF

슬라이딩모드와 최적제어를 이용한 PMSM 제어 (Control of PMSM Using Sliding Mode Control and Optimal Control)

  • 신정호;김민찬;박승규;곽군평
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1784_1785
    • /
    • 2009
  • This paper presents sliding mode control and optimal control techniques for controlling the speed of permanent magnet synchronous motor. Virtual sliding surface has nominal dynamics of an original system. The performance of the system with sliding mode control and optimal control is compared with the response of the nominal system. As a result, the sliding mode control and optimal control has robustness against the system uncertainties.

  • PDF

적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어 (A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme)

  • 이지민;박성환;박민규;김종식
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF

슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어 (Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control)

  • 채승훈;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF