• Title/Summary/Keyword: Optimal regulator

Search Result 238, Processing Time 0.025 seconds

On the Robust Stability of the Optimal Digital Linear Regulator Having L Sample Controlling Delays. (L샘츨의 제어늦음을 갖는 다지탈 최적 선형 Regulator의 Robust 안전성)

  • 이동철;정형환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 1987
  • Due to the recent development of microprocessor, the digital control is now in use for the practical structure of the control systems, but it leaves the problem of controlling delays caused by computation time when it is applied to the realization problems, such as application method of the control law and controlling effect of continuous control, etc. This paper deals with robust stability of the digital regulator which compensates for the controlling delays by applying prediction values of state.

  • PDF

Optimal Sizing of Intercepting Flow for Reducing Pollution Loads Caused by CSOs (CSOs 저감을 위한 차집관거 최적화 시스템)

  • Kong, Min-Keun;Bae, Ki-Hyun;Kang, Woo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.418-424
    • /
    • 2004
  • An abrupt high pollution loads in combined sewer systems is believed to be caused by first flushing actions and the resuspension of sediments deposited in sewers. Therefore, pollution loads in each flow regulator have a different tendency. This systems control intercepting flow in each flow regulator using water quality and water level. A desired quantity of intercepting flow was adjusted and the necessary slide position for a constant intercepting is calculated by Optimization programming. This systems make it possible to reduce pollution loads caused by CSOs to water body, may be alternative for the stable operation of STP through improving water quality to STP.

Stabilzed Control of an Inverted Pendulum Cart System Using the Optimal Regulator (최적 Regulator를 이용한 도립진자 시스템의 안정화 제어)

  • 박영식;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.4
    • /
    • pp.315-323
    • /
    • 1990
  • A design technique of dynamic stabilization controller for the intrinsic unstable inverted pendulum system is introduced. Mathematical modelling with the more complex nonlinearity and the stabilized control theory presented by C.D.Johnson are adapted to this system by using the state-space approach. And the Stabilized controller with the designed optimal regulator type which can be fastly tracked and can be accurately counteracted aginst all effects of the constant distrubances and the parameteric variations is simulated and is implemeted successfully on the microcomputer.

  • PDF

An Analysis of n VCO Voltage Regulator for Reducing the Effect of Power Supply Noise (전원 잡음 영향을 줄이기 위한 VCO 정전압기 분석)

  • Heo, Hoh-Young;Jeong, Hang-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.269-273
    • /
    • 2009
  • A voltage regulator can be used to reduce the effect of the power-supply noise on the control voltage of the VCO. An accurate analysis of the voltage regulator circuit is needed for the optimal design of the voltage regulator. This paper clarifies an inaccuracy in a recent paper on the replica-compensated regulator far supply-regulated PLLs: neglect of MOSFET parasitic capacitances. As a consequence, an improved analytical model is derived for the replica-compensated voltage regulator. The derived model is verified through circuit simulation. The voltage regulator has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. The chip area is $1mm^2$.

Time varying LQR-based optimal control of geometrically exact Reissner's beam model

  • Suljo Ljukovac;Adnan Ibrahimbegovic;Maida Cohodar-Husic
    • Coupled systems mechanics
    • /
    • v.13 no.1
    • /
    • pp.73-93
    • /
    • 2024
  • In this work, we propose combining an advanced optimal control algorithm with a geometrically exact beam model. For simplicity, the 2D Reissner beam model is chosen to represent large displacements and rotations. The difficulty pertains to the nonlinear nature of beam kinematics affecting the tangent stiffness matrix, making it non-constant, which compromises direct use of optimal control methods for linear problems. Thus, we seek to accommodate a time varying control using linear-quadratic regulator (LQR) algorithm with the proposed geometrically nonlinear beam model. We provide a detailed theoretical formulation and its numerical implementation in a variational format form. Several illustrative numerical examples are provided to confirm an excellent performance of the proposed methodology.

Robust suboptimal regulator design for linear multivariable system

  • Lee, Jae-Hyeok;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.841-846
    • /
    • 1990
  • In this study, a design method to obtain a robust suboptimal regulator for linear multivariable system is presented. This new design method is based on the optimal regulator design method using eigen-structure assignment and it uses additional cost function which represent robustness of the closed loop system. When we design the regulator using pole assignment method for linear multivariable system we have extra degree-of-freedom after assigning desired eigenvalues of the closed loop system in determining the feedback gain. So we assign additional robust suboptimal regulator. In this study we also feedback the system output for more practical applications.

  • PDF

A Note on the Time Optimal Control of Dynamic Systems with Time Delay (시간지연 시스템의 최단시간제어에 대한 연구)

  • 김병국;변증남
    • 전기의세계
    • /
    • v.28 no.3
    • /
    • pp.37-50
    • /
    • 1979
  • The time optimal control of dynamic systems with time delay is studied with emphasis on the practical realization of controllers. An extensive survey on various methods of control is included and a result for a time optimal regulator with signle delay in control is presented and simulated on a digital computer.

  • PDF

Vibration control of elastic systems (탄성계의 진동제어)

  • 박영필;이상조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.113-118
    • /
    • 1986
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF

A Study on the SVR Optimal Placement in Distribution System with Distributed Generators (분산전원이 연계된 배전 계통의 SVR 최적 설치위치 선정)

  • Lee, Hyun-Ok;Huh, Jae-Sun;Kim, Chan-Hyeok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.69-75
    • /
    • 2013
  • This paper proposes a new algorithm for the optimal placement of a step voltage regulator(SVR) in distribution system with Distributed Generators(DG) using a Particle Swarm Optimization(PSO). The objective function of this algorithm is to find optimal placement for minimum loss while maintaining each node voltage fluctuations within upper and lower limits. In the objective function of proposed algorithm, the deviations to reference voltage and the distribution loss are considered. To verify effectiveness of the proposed method, simulation is implemented using MATLAB.

Linear-Quadratic-Gaussian Regulators with Moving Horizons (가변경계조건을 갖는 새로운 칼만필터 및 레규레이터 구성)

  • Kwon, W.H.;Park, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.80-82
    • /
    • 1979
  • While the standard linear-quadratic-Gaussian problem has fixed horizons, this paper considers the LQG problem with moving horizons. By the separation principle the solution will be given by the kalman filter with the approaching horizon and the LQ regulator with the receding horizon. Sufficient conditions on weighting matrices are derived under which the filter and regulator are asymptotically stable. It wall be shown that the computation method of the moving-horizon LQG regulators is better than that of the standard LQG regulator. The performance measure between the two optimal controls will be compared. A simulation result is given in order to show the usefulness of the moving-horizon LQG regulator.s

  • PDF