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Abstract

The time optimal control of dynamic systems with time delay is studied with emphagis

on the practical realization of controllers. An extensive survey on various methods of

control is included and a result for a time optimal regulator with single delay in control

is presented and simulated on a digital computer.

1. Introduction

In the mathematical formulation of physical
processes, a large class of physical processes can
be satisfactorily described by a system of ordin-
ary difefrential equations. The assumption is
that the future behavior of the system depends
only on the present state and not at all upon its
past histor{, and also, that the influence of the
present state is instantaneous. But therc are
control processes that involve nonnegligible time
delays, which exist when changes occuring at
one point in a system are reproduced at another
point after a finite interval of time. These can
be described by systems of delay diffcrential
equations[34]. The significance of these equa-
tions lies in the ability to describe processes with
aftereffect, which appear also in various branch
of technology, economics, biology, and medical
science.

One example of time delay system is the cold
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rolling mill {82,83] where the incoming sheet
is rolled down through several rollers.An X-ray
thickness gauge following the final roll measures
the final thickness. The time delay in the sys-
tem arises due to the spacing between the roll
and the gauge, which is proportional to the sp-
acing divided by the speed of the sheet. Another
examples of time delay systems are the viscosity
blender, the heat exchanger [83], the catalytic
cracker (822, and the automatically controlled
furnace where the material strip is heat-treated
passing through the furnace [91_.

Time delay in the system often causes an und-
esirable system performance such as oscillbtion,
lengthy scttling time or even breakdown. A feed-
back controller applies the corrective action based
on the present state of output, therefore the
automatic control ¢f a process centaining such a
time delay is obviously difficult. Considering the
frequency response of such a system, the time
delay introduces phase lag without attenuation,
thuse prmitting only low values of loop gain
and the closed loop control becomes poor.

The study of specific time optimal system has

been a major influence in the development of
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modern control theory. In section 2, the time op-
timal control problem for systems characterized
by delay differnetial equations has been survey-
ed. Some results can be obtained by the extens-
ion of the Pontryagin’s maximumrinciple and
Neustadt’s method in an abstract framework.
Also, the problem with target in function space
is discussed, which is a more realistic approach
for the practical purpose of regulation. Problems
wthi delayed contrcl variable and no delay in
the state variable are discussed, and many pa-
pers concerning the realization of such systems
are discussed, based mainly on the theory of
time optimal control for nondelayed case.

In section 3, the time optimal feedback con-
trol of linear systems with pure delay in the
control path is discussed. Using the Smith’s lin-
ear predictor scheme, the system with single
delay in control can be transformed to the system
without delay, and the time optimal bang-bang
principle is applied and solved for the nondelay-
ed system, which combines to become a practical
implementation of the time optimal control of
The results of
simulation are discussed in section 4.

delayed control variable case.

2. Summary of Previous Results

2-1. Delay-in-state case

Control problems mvelving the time delay sys
tems have been investigated by many researchers
[12,22], which are described by the following
general delay differential equation (or differen-
tial equation with retarded argument)[14]

(t—oﬁ) ’

w(t), 2 (E—vy),neneer , u(t—ve),t]l =ty (1)
where z(t) is an n-dimensional state vector

AW —fla(t), wt—0), 0w,

u(¢) is an r-dimensional control vector

and  0<8,<B,<eemree <Bpy Oy, <CppConnnes <y,
together with the initial functions
x(t)=¢(t): to—0,<t=t, (2)
w(B)=¢(t), ti—v=t=t,. (3)

It is the simplest and most natural type of
functional differential equation (or differential
equation with deviating argument) [12,34]
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where z(-) denotes the dependerce of fon some
of the values z(s), a<<s<t with a=t,=initial
time. This functional differential equation is used
to describe hereditary systems, whose dynamics
are described by equation in which the rate of
change of presents tate depends essentially on
past data of the system, such as past control,
or past state derivative [9,13,42].

When constant time delays appear only in the
argument of the state variables of the system,
(1) is reduced to

2=z @), 2{t—01), -, zE—0),u(®)) (5)
withinitial conditions on z(¢f) specified by (2).
The problem is to minimize the objective func-
tional (or cost functional) I represented by

I=Ga )+ [ ] Fla (), 2(¢—0)), -, 2(t=0)),

u())dt (6)
by choosing the optimal control «*(¢) within
the admissible control set ¢f «(¢) i.e., u(t)=Q.

For the optimal contrcl prcblem given by (5),
the optimal control «*(¢) maximizes the Hamil-

tonian defined by

H=F+2r ')
where the adjcint vectrs A(z) are given by [77]
OH({) » 8H(7)

_{ ox(t) +§[ 5z (zr—0;) ],:Hﬂi}
0<t<t;—b,
aH(r)

ai_|_( MO S

ti—0p1-n<t<t;—0a-»
k:l’ 2’ ...... , p—l

.
o~

dH(®)
ox(t)

Considering the equation (8), to obtain the i(2),
a knowledge of z(t) and 2(¢+6,), i=1,2,-,p is
required. Therefore computaticnal schemes resu-

tr—0,<t<ts. ®

Iting from the undelayed maximum principle can
not always pessibly applied to the time delayed
case.

This type of problem with delay-in-state has
received the major attetnion. Kharatishvili(51]
extended Pontryagin’s maximum principle [75]
for the case of single time delay in the state
variable. Chyung [25,27] and Connor [29] has
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derived necessary conditions for single delays in
linear systems which is represented as

M =AWz W) +B)x(t—r) +dlult), ). [€))]
Chyung and Lee [23,24]) have derived existence
and unqueness theorems as well as necessry and
sufficient conditions for optimality when the
cost functional is either linear, quadratic, or
satisfies certain convexity conditions. Controlla-
bility and stability of time delay system are
treated by Lee and Manitus [62).

Banks [8] considered a nonlinear system with
variable time dependent lags and derived an int-
egral form maximum principle. Banas and Vacr-
oux [6] considered the case with variable time
dependent lags alse. Connor {307 proposed a
simple degradation methcd which is iterative
for the sclution of time delay systems having a
state inequality constraint. Optimal control pro-
blems formulated with discrete-time systems with
time lag is considered by Chyung{26] where the
existence and the maximum principle are proved.

The time-optimal problem for systems chara-
cterized by linear delay differential equations
has been investig ated by Haratisvili [44], also
pontryagin et. al. {75), Shimemura 779], and
Oguztoreli [72, 73, 741, OQgutztoreli (72, 73] has
derived existence theorems and necessary con-
ditions and generalized this work in his bock[74]
to the system with the equation

HO=3M D200+ [ K, Da () ds
+B@)u(t)+ 1) (10)
0=0,<C,<++eeee <8,

where K is a centinuous matrix

f () is a given continucus z-dimensiocnal column
vector with the control region

R={ullup() | L1, k=1,-ee > ) 11
He showed that the problam can be reduced to
an integral equation using the kernal matrix
representation, and fhe bang-bang principle
due to La-Salle[58,43] is extended for this prob-
lem, which is stated as follows; “If there is
an optimal control, then there is always a
bang-bang control that is optimal.” Wells and
(921 used the Kernel matrix for
synthesizing the time optimal contrel function

Kashiwagi

for a second order linear systems with a cons-
tant state delay, Neustadt [68] described a me-
thod for synthesizing time optimal controllers
for linear systems of ordinary differential equa-
tions, which is adapted to treat certain class of
linear hereditary systems [10]. Jacobs and Pic-
kel [50] applied the Neustadt’s abstract variati-
onal theory [69,70] to certain time optimal con-
trol problems involving neutral delay differen-
tial equations.

2-2. Delay in beth state and control case

When the system has constant delays in both
the state and the control, the system can be de-
scribed by the equation(l) with initial condtions
(2),(3). The objective functionial to be minimi-
zed is

I=GLeG))+[ TFla(®), 20, =(t—b),

w(t), u(—vy),e-ree- , ult—yg) dt (12)
by choesing u* (), t,=<t=<t;.

Kharatishvili [52] dervied a maximum princi-
ple to an optimal control problem with delays
both in the controls and in the state variables,
which is the principle result for non-linear sys-
tems. Ichikawa [48] derived the same result by
transferming the equation into an infinitely high
order differential fcrm. Lee [(61] derived a maxi-
mum principle for the system

x()=Ax ) +Bxz(t—1)+Cu(t)+ Du(t—a) (13)
with convex cost functionals. Sufficiency ccndi-
tion and result cn the existance have also been
given. Chyung 728 applied the optimization
technique to the discrete ferm.

Bate [14) considered a system by differential-
integral equation and derived a necessary con-
dition. Using the kernel matrix representation,
he derived necessary conditicns for quadratic
problem, time optimal problem, and minimum
effort control problem. He also applied the result
to linear systems with delay in state and control.
Halanay [41] established the maximum principle
for systems with delay in both state and control
and for systems with time-variable lags. Budelis
and Bryson [19] derived scme results for this
system and presented an analytic solution for a

linear system with a quardratic performance
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index. Ray and Soliman(77] surveyed the delay-
in-state case and delays in both state and control.
He extended the result to the case with variable
timerdelays, and propcsed a conjugate gradient
control vector iteration algoriahm and tested on
a continuous stirred tank reactor. Teo and Mcore
(871 proved an integral maxiumum princple fol-
lowing the approach based onithe theory of qu-
asiconvex families of functions [8,38]. This res-
ult is uszd to cbtain a peintwise maximum prin-
ciple of the Pontryagin type. Hughes [47] exte-
nded a maximum principle by Hestenes [45] to
control problams which invclve delays in both
the state and the control variable,

2-3. Function space target problem.

Many authors have dealt with problems of
controlling a system to a target point in R"- the
Eucledian n-dimensional space. Thus the usual
optimal control problem investigated was that
of finding a controller which steers the output
of a time delay system from a given inital func
tion to a final point while minimizing the given
cost functional. I» systems without time delays,
once the system has reached a target peint, it
is usually possible to remain at that state there-
after. However, when there is a time delay in
the system, reaching a final point deces not gua-
rantees that the system can be remained at such
a state thereafter. In mest of the practical con-
trol systems, the objective is to change the pre-
sent system state to a new state and to keep it
in the new state. The regulater problem is one
of the typical examples for such problems.

A more realistic approach for the control of
time delay systems is the problem of controlling
an object, subject to delay dynamics, not to a
single point in R® but to a target which is a
point in a function space. For the practical pur-
pose of regulation, this is a more realistic appr-
oach. The prescribed target may be a function
defined on an interval of length which is a ma-
Ximum delay of given system.

x(t, ¢, u)=E() ii—-0=<t=ts (14

The problem of optimal contrel of time delay
system to a final fuction target are studied by
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several researchers. In Banks (7] and Jacobs(49]
no magnitude constraints in control variable
were impesed, Banks and Kent [11] derived ne-
cessary and sufficient cenditions in integral for-
m for the system of retaded and neutral type.
In Banks [11] and in Charrier [21], it is shown
that the bang-bang preoperty cf LaSalle(58] dces
not hold in the strict sense but in scme appre-
ximate sense. Using degeneracy of linear auton-
omous delay differertial equations studied by
Popov [76], Charrier [21] pointed cut a new be-
havior of some contrclled delay systems, which
is called the loss ¢f memory phenomencn.

Bien (162 derived a necessary condition in the
form of a pointwise maximum principle whit a
nontrivial adjoint solution. The result is appli-
cable for the cases where there are magnitude
constraints cn the ccntrcl varizbles. Westdal
and Lehn (93] considered a time-optimal regula-
tor prceblem with increasing the dimesion of the
system which transforms to a nondelayed pro-
blem, and sclved an example using the iterative
methceds on a computer.

2-4. Application

Coensidering the application of time optimal
contrel theory to the practical systems, it is
restricted to relatively simple systems such as
the systems with delayed contrcl variable and
no delay in the state variable. This is due to
the lack of results on the development of com-
putaticnal metheds for optimal control synthesis.
Much of the realization processes arebased on
the thecry cf time optimal control for nondela-
yved case.

The theory for time optimal control for non-
delayed system has besn established rather com-
pletely (4,15, 20, 39, 40, 46,53,57,75,89]), and it is
implemented to the real processes or simulated
in many papers. Discrete time domain approa-
ches are also done by many researchers (2,3, 31,
32,71,95). Burnovsky [(17,18] has established the
theory for the closed loop time optimal control
and sclved in dimension twe. Wang(90] has pro-
posed the analytical methed for practical design
of electrohydraulic servomechanisms. A dual
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mode approch is used which involves opening
the valve ports as wide as possible during the
initial acceleration (bang-bang control), followed
by controlled closure (conventional feedback con
trol) during deceleration. A dual mode approach
is also discussed in the paper by Freguson [35).

Fujisawa [36]) has and Knudsen [543 have es-
tablished an iterative prccedure for solving
the time-optimal regulator problem suitable for
digital computers with the proof of exponen-
tial convergence. Baba [5] found the algorithms
for the on-line closed-loop computer control cf
a linear process based on a time-suboptimal con-
treol for a linear discrete system. Sephaban 78]
has designed experimental sing-axis time-optimal
attitude control computer using the digital-differ-
ential analyzer technique. Mohleji and Thomas
[66,67) designed the optimal thir%—order bang-
bang systems using delayed switching, and pre-
sented a simple digital technique and takes into
consideration any change in system parameters.
Szabados et al 785,86] provided for the practical
switching characteristics for minimum-time pos-
ition control using a permanent-magnet motor
and designed a time-optimal digital position con-
troller for that system. Mellichamp [94] consi-
dered a feedback controller with the fast-time
model which determines the control input each
time by considering the state feedback informa-
tion as initial conditions for the medel using a
hybrid computer.

For high-order systems, the direct application

of optimal control theories offer considerable
difficulties® since the calculation and implemen-
tation of the optimal controller is usually com-
plex. In practice however, most plants are of
high-order and there remains a need to adapt
optimal control plant to such plants. Oae appro-
ach to this problem is that the high-order plant
is approximated by a low-order system together
with a pure delay. Optimal contrel thecry can
then be applied to the appropriate plant, even
though it is of infinite order [36,60]. These ap-
proximated systems can be represented by

2@y =Ff(x®), ult—r)) (13)

— 41—

Therfore the importance of cptimality of contol
systems having time delays in the control
vector arises.

Fuller [37] centered attention on the case
when the plant has only one control input and
is represented by a pure delay followed by a
linear time-invariant system. He showed that
the optimal contrcller and optimal performance
can ofte be caclulated, provided the correspond-
ing result in the delay-free case are known. Ex-
amples for the case with the performance index

I= omq(ajl’ ...... ) :C,.)dt (16)

and the minimum settling time are given. Some
sub-optimal controllers are also discussed. Banks
et. al. [10] studied this control delay systems
systematically. The topics such as controllabi-
lilty, existance cf solution, uniqueness, sufficient
conditions are covered. Soliman [84] stated a
new necessary condition for optimality of non-
singular contrcl problems with time delay. A
necessary conditions for optimality of singular
contro]l problem (i.e., 82H/3%u(t—v,)=0 for all
te Tt ts]) 1s also obtained.

Many researchers have developed techniques
for synthesizing time optimal controllers for
control delay case. Some of them applied such
techniques to real processes. A number of exam
ples of processes having transport delay and
methods for quantitative determination of time
lags are given by Ziegler and Nichols [97].

Thomasson and Ccok [88] has described a me-
thed of constructing a swtiching curve for a
second-order system with a delayed control vari
able. The method is restricted to systems with
distinct pcles on the negative real axis. Latour
and Koppel [55,59,60] hes extensively studied
the transportation lag systems. A two-position
programmed centroller, based on switching time
is synthesized cn an analcg computer [55Jwhich
has experimented cn the water temperature pr-
ocess [59]. Also, a feedback, time-optium, swit-
ching centrollers is reported with emphasis on
their practical design characteristics for process
control [60]. Miller [65) has derived a control
algorithm for basis weight of a wet-end dynam-
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ics, with limitations in real-time measurements
of product qualities, which operates on a profile
average feedback and is adaptive in terms of
machine speed. Kurzweil [56] presented a digi-
tally oriented technique for the control of pro-
cesses in which a primary characteristic of the
process is a set of pure transport delays asscci-
ated with the input dynamics of the process.
Zahr and Slivinsky [96] has constructed an alg-
orithm to compensate time delay effects in the
process and verified on third order systems with
two inputs and two outputs.

An alternative approach for time delay com-
pensation in feedback control systems, the anal-
ytical predictor has been developed by Moore
et. al. (99]. In their approach a process model
is used to predict the future output from current
measurements and the predicted value is sent to
the controller. Meyer et. al. (98] used this tech-
nique for experimental and simulation studies.

3. Time-Optimal Feedback Solution for
Single Delay in Control Case

In this section, the attention is restricted to
the time-optimal feedback contreol of the linear
systems with pure delalys in the contrcl paths
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only.

As mentioned previcusly, conventional feed-
back contrcller pcsseses many problems such as
oscillation, low values cf lcop gain etc. But the
design of the feedback controller for time delay
system is generally very difficult. In addition,

even though the design produre has been finis-
hed, the practical
done in many cases because of hardware difficul
ties. The advent of computers, and recently, the
wide use of microprecessors have decreased bur-
dens on the hardware implementation of control
systems. This secticn covers the application of

implementaticn can nct be

one of schemes for compenszting the time delay
[33,94), viz., linear predictor control [82,83] to
time-optimal feedback contrcl and describes the:
metheds to simulate these scheme on a digital
computer. This controller can be implemented
directly on the micrccomputer based control
system.

The conventional feedback precess control sys-
tem is shown in Fig. 1 with a forward transfer
function of the process with pure delay written

as

f,gg =G()=KGo(s)e™"

where K=steady-state gain factcr cf the proce-

a1

[ |

-5

b

/-

—

R¢sH E<S UeS CS

KGQ(S)‘:’.

ec (S) - —::' i

i

Piant

Fig. 1. The conventional feedback process contrel system with pure contrcl delay
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Fig. 2. Linear Predictor Control Schem:z
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Fig. 3. Time optimal feedback regulator

sses and r=pure time-delay constant, with input
constraints |u(?)|<1.

In the linear predictrel Control suggested by
Smith 81,82,83] the information based the pre-
sent state of the output is analyzed, the state
after a time equal to the dead time is anticipated
and a corrective action is applied immediately,
by providing a minor feedback loop around a
conventional controller with the transfer func-
tion (Fig. 2-a)

G, (5)=KG,(s) 1—e ") 18
where G,(s)=process model transfer function=
Go(s).

Singh [80] have shown that using an appro-
ximate analog model of dead time synthesized
from electronic components, a controller using
the linear predictor approach is quite practicable.
Mee [63] extended this predictor control to the
problem with a quadratic criterion.

If the nondelayed state output can be obtained,
it is possible to construct a feedback time-opti-
mal controller #(¢) based on the switching sur-
face (v.(t), ».7t)) in the state-space. In Fig. 2,
Y(s) can be represented by

Y(s)=KG,(s) (1—e= ") U(s)+C(s) 19
Assuming the process model transfer function
G.(s) is equal to the plant transfer function
Go(s), Y(s) becomes
Y(s)=KG,(s)Us)~KG,(s2e " Uls) + KGo(s;e "' Us) -

=KG,(s)Us) 20)
So, Y(s) can be considered as the desired non-
delayed state output as in Fig. 2-b. By using
this state y{#), the time-optimal contrcller can
be implemented as in Fig. 3. If y{) is nct avai-

lable,it is required that «(f) must be determined
by the future values of ¢ (), considering the
equation (17) for the feedback configuration.
But, »(#) can be cbtained as a function of y(¢)
since y(¢) can be obtained frcm c(¢) and prior
values of «(¥).

The control of processes whose dynamic be-
havior can be adequately represented by the

second-order plus dead time transfer function

C(s) _ Kexp(—1zs)
T == 50 G @b

is of interest since this class of process includes
many operations in the process industries(55, 60].
In this case, equation (19) is represented by

Y(s) _ K
U(s) (s+21) (G+p2)

whose state variable representation is
F@)=Ay (&) +Bu(f)

o S N

The time optimal control cf this problem for

22)

a step input of »(#) can be stated as follows:
given the system (23) with initial condition «(¢)
=0, —7r=¢=0, find the minimum time ¢* and
the optimal trajectory y* which renders the sys-
t=¢* in minimum time #*
lu(@) =1, for

tem state ¥,(t)=d,
with the admissible control set
all ¢.
By using the similarity transformation(4]
{t)=P'yt)
where
()
0 A

and 2, 2, are the eigenvalues cf the matrix A4,

29
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which become

A== A==
for this case. It is convenient to define the state
variables z,(#) and z.(#) by the relations

m=) -2t

2= iﬁ"_K“i)_~ ® (25)
Then x,(¢) and 2,(f) satisfly the differential
equation

&)=z, () + u(?)

F2 (1) =Rz () + Ao () (26)

Using the Pontryagin’s maximum principle, the
optimal control must be

u(t)=4d=-+1 27
and the optimal trajectory is described by
. z, () +4 %
2O =— 4+ (Gt 4) [—‘5—+j—] 28)

where a£2,/2,. Assuming that 0>4,>21, the

trajectoreis for this problem is drawn as in Fig. 4

A2
~N \\
~ N +
S o 4 Y
~ ~
\\ )
-~
U=-1 ~~
e P ——————— ~H |

Region B _ -~

Fig. 4. Time-optimal ‘l'rajectoreis

The coordinates of the state planecan be trans-
formed into each other by the relation

gl 1 — A2, )»1] 1] (29)
[x] K [—mz 22 [yz

i o - e e [
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The time optimal feedback control law for this

case can be implemented as follows;

i) transform y,, ». into xi,x; usng the relation
¢2)]

i) If x1, x, is in the region A or on the line7*
then «(£)=1.

iii) If x,,x. is in the region B or on the line 7-
then «()=-1.

iv) For each time slice, repeat steps i), ii) and
iii)

4, Simulation Results

Three kinds of controllers —the conventional
linear feedback controller, the linear prediction
controller, and the time-optimal feedback cont-
roller are simulated using a digital computer
Nova 830. The controller and the plant dynamics
are discretized using the Euler approximation
of the derivatives [1].
written in BASIC language, and the out puts are

All the programs are

drawn on the graphic terminal using the adequ-
ate software routines.

The conventional linear controller used the
differencess between the reference signal «(¢)
and the feedback signal c¢(¢) as an
shown in Fig.1. The linear prediction controller

input as

uses a compensated output state y(#) for the
feedback singal as in Fig. 2. The time optimal
feedback controller accepts informations about
the input «{¢) as well as the output state ¢ (£).
On calculating the compensated term »(¢), the
controller decides »(¢) with the information »(2)
and y(¢) using the time optimal control law
represented in the last part of section 3 (refer
Fig. 3). All inputs are bounded by lu(#)|<1.
The simulated results for the output state for
the step input of »(t) are shown in Fig. 5. In
this simulation, the discretized time interval is
set to 0.0l sec, and the time delay is set to 1 sec,
and finally the controller gain G.(s) 1is set to
unity. Simulatiors are done with various param-
eters of the plant constants i.e., by varying the
forward gain factor K, and the values of poles
P,, P,. Typical results for the parameter K=1,
P,=1, P,=2 are shown in Fig. 5-a, and K=10,
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Fig. 5-a. Simulation Results
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Fig. 5-b. Simulation Results

P,=1, P,=10 are shown in Fig. 5-b. From this
-result, it is verified that the performance of the
time optimal feedback controller are superior
than the other controllers. The linear prediction
controller can eliminate the time delay effect,
which causss oscillatory output for the conven-
tional feedback controller.But the response time
of the linear prediction controller is somewhat
long, and this s=ttling time can be minimized
by adopting the time optimal controller. It is
obvious from the figure that the responses are
appeared r seconds later after the inputs are
applied for all thres caszs, which is not different
from the physical intuition,

In the above simulation, it is assumed that
the dynamics of model is exactly identical to
the dynamics of plant. But ths zccurate descri-
ption is very complicated even if it can be ob-
tained. Tharefore, the appreximate models of

the plant dynamics are uszd genzrally. In addi-

tion, the plant dynamics may be represented by
higher order systems-say, more than 2nd order
in many physical systems. In this casz, the cal-
culation of optimal solution is rather difficult
and consumes much of time. Following these
reasons, it is ncessary to consider the casz when
the model is not identical to the plant, or fur-
thermore, when the model is a low order say,
second order approximation of the higher order
plant dynamics.

In the time optimal scheme suggested in sec-
tion 3, it can be verified that even if the model
is inaccurate, the steady state valueis equal to
the case with the accurate model, Referring Fig.
3, the term I—e * becomes zero as the system
goes to steady state since the output state rem-
ains constant in steady state. So, the minor
feedback term KG,(s) (1—e ™) has no effect and
the feed back signal y(2) is equal to c(t) in the
steady state. It follows from this consideration
that the steady state value is not affected by
the inaccurate model. Only the transient respon-
se may be affected.

Simulations are done for the case when there
is a third-order plant with pocles P,, P, P;, and
using the approximate second-order model with
poles Py, P, which is obtained by neglecting the
pole P; the pecle with largest value among the
three. Simulated results for this cass are shown
in Fig. 6. Fig. 6-1 shows the results for the
case with parameters K=3, P,=1, P,=2, P;=20,

and Fig. 6-b shows for K=10, P,=1, P.=10,
gty K=3 - LGSR FEEDBALK
3 W NG LEAR FREDICTOR
Pa=2 — - THHE DPTIMAL CONTROLL-
Pa=20 R

Fig. 6-a. Simulation Results with Approxim=ted
Model
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Fig. 6-b. Simulation Results with Approximated

Model

P;=100. From this result, it is shown that the
performances of the time optimal feedback con-
troller are superior also in this case than the ot-
her controllers. The responses are faily good
though the transient response for this case are
somewhat deteriorated due to the modeling
error. The results of simulation for various
plant parameters show that the responses be-
come better as the third pole P; is further from
the second larger pole P;, or three poles become
fairly distinct.

For simpler cases with the 1st order plant and
the model, simulations are .done and the results

are similar to the above discussions as expected.

5. Conclusion and Topics for Future
Research

The time optimal control problem for systems
characteizeyed by delay differential equation has
been surved. Also, the time optimal feedback
regulator is synthesized and simulated for the
casz with pure delay in the control paths only.
The results have shown that this controller can
be implemented on the real-time microcomputer
based control system. The prior task for the
implementation of this system is the appropriate
modeling of the plant dynamics.

The accurate solution basad on the necessary
and/or sufficisnt condition for time optimal con-
trl of dynamic systems with time delay 1is, in
general, very difficult. In addition, even though
the accurate solution may bz obtained, the im-
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plementation to the real process posseses many
hardware difficulties, and even if digital compu-
ter is used for the controller,the time limitation
arises due to the calculation 'time of the compu-
ter. So the development of the approximate syn
thesizing algorithm and implementation technique
should be necessary, which is realized to become
a sub-optimal cantroller with slight degradation

of performances.
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