• Title/Summary/Keyword: Optimal frame design

Search Result 239, Processing Time 0.03 seconds

A hybrid imperialist competitive ant colony algorithm for optimum geometry design of frame structures

  • Sheikhi, Mojtaba;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.403-416
    • /
    • 2013
  • This paper describes new optimization strategy that offers significant improvements in performance over existing methods for geometry design of frame structures. In this study, an imperialist competitive algorithm (ICA) and ant colony optimization (ACO) are combined to reach to an efficient algorithm, called Imperialist Competitive Ant Colony Optimization (ICACO). The ICACO applies the ICA for global optimization and the ACO for local search. The results of optimal geometry for three benchmark examples of frame structures, demonstrate the effectiveness and robustness of the new method presented in this work. The results indicate that the new technique has a powerful search strategies due to the modifications made in search module of ICACO. Higher rate of convergence is the superiority of the presented algorithm in comparison with the conventional mathematical methods and non hybrid heuristic methods such as ICA and particle swarm optimization (PSO).

Design of the Stiffened Punch for Stamping of Lead Frame by Buckling Analysis (좌굴해석을 이용한 리드프레임 타발용 펀치의 보강설계)

  • Ko, Dae-Cheol;Lee, In-Soo;Ahn, Byung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.68-75
    • /
    • 2006
  • The lead frame manufactured by stamping process plays an important role in connecting semiconductor to PCB board. As a result of the miniaturization of semiconductor, its corresponding lead frame punch has been narrow. In case of the punch with high slenderness ratio such as lead frame punch, the punch can be broken suddenly due to buckling. To prevent the fracture of lead frame punch, some manufacturers have experientially attached stiffeners to weak parts of punch. The purpose of this study, therefore, is to suggest the guideline far design of stiffened punch. The optimal position and the number of stiffeners to be attached to punch are investigated by elastic buckling analysis. The elastic buckling analysis consists of the eigenvalue buckling analysis and nonlinear buckling analysis. The critical buckling load of elastic buckling analysis is compared with that of buckling test. Finally, the guideline far attaching stiffeners is suggested through analysis of cross section of lead frame punch such as moment of inertia and eccentricity.

Parallel O.C. Algorithm for Optimal design of Plane Frame Structures (평면골조의 최적설계를 위한 병렬 O.C. 알고리즘)

  • 김철용;박효선;박성무
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.466-473
    • /
    • 2000
  • Optimality Criteria algorithm based on the derivation of reciprocal approximations has been applied to structural optimization of large-scale structures. However, required computational cost for the serial analysis algorithm of large-scale structures consisting of a large number of degrees of freedom and members is too high to be adopted in the solution process of O.C. algorithm Thus, parallel version of O.C. algorithm on the network of personal computers is presented in this Paper. Parallelism in O.C. algorithm may be classified into two regions such as analysis and optimizer part As the first step of development of parallel algorithm, parallel structural analysis algorithm is developed and used in O.C. algorithm The algorithm is applied to optimal design of a 54-story plane frame structure

  • PDF

Optimal Design of Frame Structure Considering Buckling Load (좌굴하중을 고려한 프레임 그조물의 최적 설계)

  • 진경욱
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.59-65
    • /
    • 2000
  • In this paper the comparison of the first order approximation schemes such as SLP(sequential linear programming) CONLIN(convex linearization) MMA(method of moving asymptotes) and the second order approximation scheme SQP(sequential quadratic programming) was accomplished for optimization of nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore when it is considered with the expense of computation MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem it was applied to the helicopter tail boom con-sidering column buckling and local wall buckling constraints. it is concluded that MMA can be a very efficient approxima-tion scheme from simple problems to complex problems.

  • PDF

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.271-277
    • /
    • 1997
  • The important parts of the developing AGV model are fabrication of each part and design technology of the body frame. In present day, design of the body frame is depend on the experience of the industry place and the systematic data and the optimal design technology of the frame for the case of model change is insufficient. In this study, the strengths of the AGV(Automatic guided vehicle)are examined with the 3-dimensional Finite Element method. In order to verify the FE results, the computed results are compared with the experimental results are compared with the experimental data from the strain-gage output data. New model designed by removing some parts of the initial model and choosing the thickness change of the rectangular-pipes.

  • PDF

Ground Beam-Joint Topology Optimization for Design and Assembly of Multi-Piece Frame Structures (그라운드 빔 조인트 기반 위상최적화법을 이용한 프레임 구조물의 조립 위치 및 강도 설정)

  • Jang, Gang-Won;Kim, Myeong-Jin;Kim, Yun-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.688-693
    • /
    • 2007
  • Most frame structures cannot be manufactured in a single-piece form. Ideally, when a structure is built up by assembling multi pieces, assembly at the joints should be rigidly performed enough to have almost full stiffness, which is difficult for practical reasons such as manufacturing cost and time. In this research, we aim to develop a manufacturability-oriented compliance-minimizing topology optimization using a ground beam model incorporating additional zero-length elastic joint elements. In the present formulation, design variables control the stiffness of zero-length elastic joints, not the stiffness of beams. Because joint stiffness values at the converged state can be utilized to select candidate assembly locations and their strengths, the technique is extremely useful to design multi-piece frame structures. An optimal layout is also extracted based on the stiffness values.

  • PDF

A Strength Analysis of the AGV Structure using the Finite Element Method (유한요소법을 이용한 AGV 구조물의 강도해석)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.37-42
    • /
    • 1998
  • The important parts of the developing AGV model are the fabrication of each part and the design technology of body frame. In the present day, design of the body frame depends on the experience of the industrial place. the systematic data need for the optimal design of the frame for the case of model change. In this study, the strength of the early stage AGV(Automatic guided vehicle) is examined with the 3-dimensional finite elemnt method. In order to verify the finite element results, the computed results are compared with the experimental data from the strain-gage output. A New model was designed by rmoving some parts of the early staged(roughyly designed) model and choosing the thickness change of the rectangular-pipes.

  • PDF

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Optimal Design of Frame Structures with Different Cross-Sectional Shapes (여러 단면형상을 갖는 뼈대구조물의 최적설계)

  • Han, Sang Hoon;Lee, Woong Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.27-37
    • /
    • 1993
  • An efficient method to solve the minimum weight design problem for frame structures subjected to stress and displacement constraints is presented. The different cross-sectional shapes are conside red in order to apply engineering design in which usually required custom fabrication. To increase the efficiency of the optimization process, the structural response quantities(nodal forces, displacements) are linearized with respect to cross-sectional properties or their reciprocal, based on first order Taylor series expansion, while cross-sectional dimensions are considered as design variables. Numerical examples are performed and compared with other methods to demonstrate the efficiency and reliability of approximation method for frame structural optimization with different cross-sectional shapes. It is shown that the number of finite element analysis is greatly reduced and it leads to a highly efficient method of optimization of frame structures.

  • PDF