• Title/Summary/Keyword: Optimal Solution algorithm

Search Result 1,314, Processing Time 0.027 seconds

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

An optimization approach for the optimal control model of human lower extremity musculoskeletal system (최적화 기법에 의한 인체 하지 근골격 시스템의 최적제어 모델 개발)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.4
    • /
    • pp.54-64
    • /
    • 2005
  • The study investigated genetic algorithms for the optimal control model of maximum height vertical jumping. The model includes forward dynamic simulations by the neural excitation-control variables. Convergence of genetic algorithms is very slow. In this paper the micro genetic algorithm(micro-GA) was used to reduce the computation time. Then a near optimal solution from micro-GA was an initial solution for VF02, which is one of well-developed and proven nonlinear programming algorithms. This approach provided the successful optimal solution for maximum-height jumping without a reasonable initial guess.

  • PDF

An Induction Motor Optimal Design for Electric Vehicle Using Niching Genetic Algorithm (Niching 유전 알고리즘을 이용한 전기자동차용 유도전동기의 최적 설계)

  • 이철균;조동혁;정현교
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.169-177
    • /
    • 1998
  • In the case of an induction motor efficiency optimal design for electric vehicle which is a real world problem, several different designs are almost equal in terms of efficiency. But these designs may have the differences in terms of other characteristics such as power factor, temperature rise, material cost, and ease of manufacture. Therefore it is necessary that an optimization routine suggests various possible solution alternatives and a designer selects optimal solution among them using other characteristics, his experience and judgment. In this paper new niching genetic algorithm and the rating function method to select the optimal point among possible optimal solution alternatives are presented.

  • PDF

Optimal Time Slot Assignment Algorithm for Combined Unicast and Multicast Packets

  • Lee, Heyung-Sub;Joo, Un-Gi;Lee, Hyeong-Ho;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.172-175
    • /
    • 2002
  • This paper considers a packet-scheduling algorithm for a given combined traffic of unicast and multicast data packets and proposes a hybrid router with several dedicated buses for multicast traffic. Our objective is to develop a scheduling algorithm that minimizes schedule length for the given traffic in the hybrid router. We derive a lower bound and develop an optimal solution algorithm for the hybrid router.

  • PDF

Hyper Parameter Tuning Method based on Sampling for Optimal LSTM Model

  • Kim, Hyemee;Jeong, Ryeji;Bae, Hyerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.137-143
    • /
    • 2019
  • As the performance of computers increases, the use of deep learning, which has faced technical limitations in the past, is becoming more diverse. In many fields, deep learning has contributed to the creation of added value and used on the bases of more data as the application become more divers. The process for obtaining a better performance model will require a longer time than before, and therefore it will be necessary to find an optimal model that shows the best performance more quickly. In the artificial neural network modeling a tuning process that changes various elements of the neural network model is used to improve the model performance. Except Gride Search and Manual Search, which are widely used as tuning methods, most methodologies have been developed focusing on heuristic algorithms. The heuristic algorithm can get the results in a short time, but the results are likely to be the local optimal solution. Obtaining a global optimal solution eliminates the possibility of a local optimal solution. Although the Brute Force Method is commonly used to find the global optimal solution, it is not applicable because of an infinite number of hyper parameter combinations. In this paper, we use a statistical technique to reduce the number of possible cases, so that we can find the global optimal solution.

Fast Mixed-Integer AC Optimal Power Flow Based on the Outer Approximation Method

  • Lee, Sungwoo;Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2187-2195
    • /
    • 2017
  • In order to solve the AC optimal power flow (OPF) problem considering the generators' on/off status, it is necessary to model the problem as mixed-integer nonlinear programming (MINLP). Because the computation time to find the optimal solution to the mixed-integer AC OPF problem increases significantly as the system becomes larger, most of the existing solutions simplify the problem either by deciding the on/off status of generators using a separate unit commitment algorithm or by ignoring the minimum output of the generators. Even though this kind of simplification may make the overall computation time tractable, the results can be significantly erroneous. This paper proposes a novel algorithm for the mixed-integer AC OPF problem, which can provide a near-optimal solution quickly and efficiently. The proposed method is based on a combination of the outer approximation method and the relaxed AC OPF theory. The method is applied to a real-scale power system that has 457 generators and 2132 buses, and the result is compared to the branch-and-bound (B&B) method and the genetic algorithm. The results of the proposed method are almost identical to those of the compared methods, but computation time is significantly shorter.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems (배전계통 최적 재구성 문제에 PC 클러스터 시스템을 이용한 병렬 유전 알고리즘-타부 탐색법 구현)

  • Mun Kyeong-Jun;Song Myoung-Kee;Kim Hyung-Su;Kim Chul-Hong;Park June Ho;Lee Hwa-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.556-564
    • /
    • 2004
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search(GA-TS) algorithm to search an optimal solution of a reconfiguration in distribution system. The aim of the reconfiguration of distribution systems is to determine switch position to be opened for loss minimization in the radial distribution systems, which is a discrete optimization problem. This problem has many constraints and very difficult to solve the optimal switch position because it has many local minima. This paper develops parallel GA-TS algorithm for reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10% of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node aster predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium Ⅳ CPU and is connected with others through ethernet switch based fast ethernet. To show the usefulness of the proposed method, developed algorithm has been tested and compared on a distribution systems in the reference paper. From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution qualify. speedup. efficiency and computation time.

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Network Enlarging Search Technique (NEST) for the Crew Scheduling Problem

  • Paek, Gwan-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.2
    • /
    • pp.177-198
    • /
    • 1994
  • We consider an algorithm for the Crew Scheduling Problem (CSP) based on the Transportation Problem approach. The main flows of the algorithm are arranged in three steps. First we propose a heuristic algorithm of the greedy principle to obtain an initial feasible solution. Secondary we present a method of formulating CSP into a Modified Transportation Problem format. Lastly the procedures of network search to get the optimal solution are presented. This algorithm can be applied to the general GSP and also to most combinatorial problems like the Vehicle Routing Problems. The computational results show that the large size CSP's could be tackled.

  • PDF

Optimization Model for Sewer Rehabilitation Using Fast Messy Genetic Algorithm (fmGA를 이용한 하수관거정비 최적화 모델)

  • Ryu, Jae-Na;Ki, Beom-Joon;Rark, Kyoc-Hong;Lee, Cha-Don
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.145-154
    • /
    • 2004
  • A long-term sewer rehabilitation project consuming an enormous budget needs to be conducted systematically using an optimization skill. The optimal budgeting and ordering of priority for sewer rehabilitation projects are very important with respect to the effectiveness of investment. In this study, the sewer rehabilitation optimization model using fast-messy genetic algorithm is developed to suggest a schedule for optimal sewer rehabilitation in a subcatchment area by modifying the existing GOOSER$^{(R)}$ model having been developed using simple genetic algorithm. The sewer rehabilitation optimization model using fast-messy genetic algorithm can improve the speed converging to the optimal solution relative to GOOSER$^{(R)}$, suggesting that it is more advantageous to the sewer rehabilitation in a larger-scale subcatchment area than GOOSER.