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Network Enlarging Sea~ch Technique(NEST)
for the Crew Scheduling Problem

Gwan-Ho PAEK*

Abstract

We consider an algorithm for the Crew Scheduling Problem (CSP) based on the Transportation
Problem approach. The main flows of the algorithn are arranged in three steps. First we propose a
heuristic algorithm of the greedy principle to obtai: an initial feasible solution. Secondly we present
a method of formulating CSP into a Modified Trar sportation Problem format. Lastly the procedures
of network search to get the optimal solution are presented. This algorithm can be applied to the
general CSP and also to most combinatorial pr blems like the Vehicle Routing Problems. The

computational results show that the large size CSP’ could be tackled.
1. Introduction

The general Linear Programming (LP) formu ation of the Crew Scheduling Problem (CSP)
does not guarantee the integer results. Even th-ugh we can find the formulation to guarantee
the integer results, we cannot get the optimal silution easily owing to the astronomical size of
the problem.

The Transportation Problem (TP), however, wlich is a special type of I.P formulation like the
Assignment Problem (AP), has many advantages n providing a stream-lined short cut to the op-
timal selutions. We can solve the large size OSI7s by TP-based algorithms because this formu-
lation needs much smaller size than the general LP formulation. Optimal solutions can be
obtained in a relatively short period of time ‘ompared with LP as well. Above all the TP
formulations guarantec the integer solution whic'. cannot be obtained automatically by the gen-
eral LP. We can save a lot of compuling time w thout the procedures for checking integrality of

the solutions.
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Consequently if we once formulate CSP into TP, we can claim the above advantages for our
algorithms. It is our great fortune that the basic structure of CSP is similar to that of TP. Ex-
cept for the row and column of super source and super sink, their structures are exactly the
same. This means we can transform CSP into TP with slight modifications, even though there
arise some difficulties such as the large number of zero pivots in the models [9]. This Modified
Transportation Problem (MTP) table is the basi: unit in our algorithm.

The formulation of MTP is given in the following format. It should be noted that the inte-
grality constraint is omitted because TP always guarantees integer results. Except for the time
constraints in (5) and (6), the formulation is the typical transportation problem. If we formu-
late CSP constraints only by the expressions (1: (2), (3) and (4), we can apply the TP algor-
ithm to this problem. The additional constraints (5) and (6) can be considered only for the

feasibility tests of the results from MTP.

Minimise  Z = % v Ci X,

subject to ]io Xy =n (1)
J}; Xy =1, fori=1,-n (2)
L Xo= 1, forj=1.m (3)
,‘:‘O X0 =n (4)
FT, + T;X, < ST, for X, = S* (5)
FT, — ST, < WT for X, X, = S (6)

where X; is the linking status, 1 (0) for linking (disconnecting)
C; is the transition cost from flight i to flight 7
n  is the number of total flights
FT,; is the finishing time of flight ¢
ST; is the starting time of flight ¢
T; is the transition time from the flight ¢ to the flight ;
S* is the set of feasible paths with consecutive flights
FT,is the finishing time of the last flight in a path of S~
ST; is the starting time of the first flight in a path of S*

WT is the work-duty-time allowable fer a path of flights
Xy is the first flight in a path of S*

X, is the last flight in the same path of X;.



F19% F25% Network Enlarging Search Technique(NEST) for the Crew Scheduling Problem 179

The MTP table generates several solutions, feasible or infeasible, with which we can make a
graph of solution network. In this graph we can trace the optimal solution by checking the
neighbours of each node of a solution until the s¢olution is not to be improved anymore. If all
the possible nodes less than the upper bound in the graph could be checked, the present upper
bound of feasible solution must be optimal. This Network Enlarging Search Technique (NEST)
provides us the possibility of tackling the large size CSP’s.

The NEST algorithm can provide flexible appro:ches to most network problems and can be ap-
plied to the combinatorial problems including the CSP variants and extensions as long as they
can be formulated in the form of TP. We formulate the minimum required constraints of the
problem into an MTP table. We consider then thz other constraints only when they are necess-
ary for a feasibility test. So the MTP formulations for different problems can share a lot of
common areas to be dealt with together in verv similar ways. This is the main reason why
MTP has very flexible applicability and great versatility.

The skeleton of NEST algorithm is presented as follows. The details of this algorithm with

examples will be discussed in the rest of the pape:.

Step 1. Initialization
Set upper bound by the heuristic algorithms
Formulate CSP with the above solution into a MTP table
Find the best solution of MTP without additional constraints
Go to step 3
Step 2. MTP table status
Find unchecked neighbour node with least value less than upper bound
If there is no unchecked node, go to step 5
Change MTP table to neighbour node status
Step 3. Feasibility test
Check the feasibility of present soluticn with all constraints
If feasible, replace the upper bound with a new solution
Step 4. Network of MTP node
Increase MTP network with new neighbours less than upper bound
Remove present checked node from M''P network
Step 5. Termination
If there is unchecked node in the netvwork, go to step 2
Present upper bound is optimal solutim

Stop



180 Gwan-Ho PAEK o A el

PR el

2. A Heuristic Algorithm for Upper Bound

Let us discuss a heuristic to get an upper bo.nd which is a key factor to reduce the problem
size in the network search. In 1976 Orloff developed a heuristic which can be considered as
another variant of 3-opt algorithm proposed for the Travelling Salesman Problem (TSP) by Lin
10 years ago [5,6,8]. Orloff argued that CSP is a special case of TSP, so that Lins heuristic can
be applied to it directly. In 1981 Smith and Wrin suggested an interchange heuristics |[11]. The
basic concept of this heuristic algorithm can alsc be considered as an adaptation of the Z-opt al-
gorithm for TSP [5]. In this algorithm only the interchange between two paths is taken into
consideration. If the first half of a path and the second half of another path can be joined with
less total cost, a new path is created. If all the combinations have the positive change cost, the
optimum is obtained.

Among this kind of heuristics, following simole heuristic algorithm “Concurrent Scheduler”,
proposed by Bodin in 1973, has proved quite successful for solving a variety of constrained
scheduling problems [1!. The main theme of thj. algorithm is the greedy heuristics which have

~1
{

become popular in recent vears owing to their simplicity [7]. It is also reported that this algor-

T
|
L

ithm is widely used in practice [ 1].

Step 1. Number the flights in an increasing order of their starting time.
Assign flight 1 to path 1
k=1

n = number of flights
Step 2. k =k + 1
If possible, assign flight k to the existing path with minimum linking cost
Otherwise, assign flight k to a new path
Step 3. If k < n, go to step ?
If k = n, stop.

Consider following Example Problem which has 7 flights. We assume that the work-duty-time
is 480 minutes and that the crew cost is 50. For simplicity, we arrange the flights in the ascend-

ing order of their starting times.
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(Table 1) Flight Time of Example Probiem

Flight Starting Finishiag Starting Finishing
No. Time Tim Place Place
1 30 90 A E
2 120 150 B D
3 150 240 D A
4 270 330 C B
5 360 450 E A
6 420 520 A D
7 540 630 D C

Example Problem covers 5 airports. The transition times between them are given in the follow-

ing table. The places in the table indicate the airports to be visited by the flights.

{Table 2) Transition Tine of Example Problem

Place A B C D E
A 0 25 30 25 30
B 30 0 20 35 30
C 39 30 0 35 40
D 20 45 30 0 30
E 25 30 25 30 0

The corresponding transition costs of Example Problem are shown in the following table. We

assume that they are not symmetric and are not proportional to the transition times.

{Table 3) Transition Cos;t of Example Problem

Place A B C D E
A 0 60 45 28 52
B 39 0 18 35 23
C 47 50 0 33 76
D 25 41 66 0 28
E 31 75 22 24 0
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By Bodin’s Concurrent Scheduler, the first flight to be chosen is flight 1 then flight 2 and
then flight 3 and so on. The flights 2, 3, 4 and 5 can be connected on the same path consecu-
tively to form a rotation. But the flight 6 cannot be connected to this path because the duration
of this path exceeds the work-duty-time. So flight 6 makes another separate path with the flight
7. We then get the final solution for Example I’roblem with the total cost 243 as follows. The

time durations of all paths are less than the work —duty —time.
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[Figure 1] Example Problem by Concurrent Scheduler

Bodin’s algorithm confers the highest priority on the linking possibility. However the final sol-
ution is ultimately evaluated by the total cost of all paths. So, first of all, the transition costs
are to be considered with the highest priority for better solutions. For some CSP’s, however, the
individual costs are not such good criteria to decide the feasible solutions. The total cost with
respect to all possible combinations should be considered. Moreover it is tacitly assumed that
there are no additional constraints in the above algorithm. The real life CSP’s usually have ad-
ditional time constraints. We propose therefore another heuristic algorithm based on the best
path principle as follows. In this algorithm Best Combination, the total cost of each variable in

the best paths is considered first.

Step 1. Initialization
Exclude the variables whose costs are greater than the crew cost
Rearrange variables in an ascending order of the individual cost (C;)
Set total variable number = n
Set Upper Bound (UB) = crew cost X flights number
Set the best total cost of each variable (B;)=0
Starting number (k) = 1

Step 2. Best path
a. Make an initial path with the k—th variable
b. Select the next feasible variable X from the remaining variables
¢. Add the flight in X to the existing path or create a new path
d. If all flights are not covered, go to Step 2. b

Best total cost (C) = ¥ C; for X; in the best path

®
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Step 3. Feedback
a. Set B;=C, if B;=0 or B;>C
b. Set UB=C, if C<UB
ck=k+1
d. If X > n, go to Step 4.
Otherwise go to Step 2.
Step 4. Reinitialization
Rearrange the variables in ascending ordur of Bj
If the order is not changed, go to step 5
k= the order of variable to be changed first
Set C = o¢ and go to Step 2.
Step 5. Termination
Write present UB as the best feasible sclution
Stop

Let us assume the transition variables of Example Problem are arranged in an increasing order
as in {Table 4) Variables X, X, X, and X, are not included because their costs are greater

than the crew cost 50.

{Table 4) First Table of Example Problem by Best Combination Algorithm

Transition Individual First Second
Variable Cost Combination Combination
X 0 200 189
X 0 200 189
X 0 200 195
X 0 189 —
X 22 195 —
Xss 23 195 -
Xis 24 247 —
X 25 249 -
X 28 200 -
Xy : 28 253 -
Xar 28 200 -
K 39 189 -

X 45 195 -
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In the above table the first combination of feisible paths starting from X,, is cormected with

the next possible variable X, which generates {1 set {X,, X... The next possible variable is
X So the first feasible set of flights is {X,, X., X.! with the cost 200. Each of the remaining
flights @7 makes the independent path. For the second feasible path, the first starting variable
X is connected with X, to produce the feasible paths set {X,, X ... The next feasible variable
to be connected to this set is X. to produce tne set {Xy X, X... Again the variable X, is
added to complete the final set of this combinaion {X;, X X., X. with the cost 189. The
cost of the first combination of the variables X, and X, 200 is replaced with this cost 189 be-
cause they are improved.

In the same manner we make the above tabl: of the best combination algorithm. The best
feasible set in Lhe table is {Xi, X, Xu, X wirk the cost 189. We rearrange the above table in
the ascending order of best combination costs. Tien the above procedures are iterated until this
order no longer changes.

The last table of Example Problem by the Bes: Combination algorithm is shown in the follow-
ing table. The order of each variable cannot be (hanged any more by our algorithm. We assume

the best solution is obtained.

(Table 5) Last Table of Example Prodlem by Best Combination Algorithm

Transition Individual First Second
Variable Cost Combination Combination
X 0 189 -
X 0 189 -
X 0 189 -
X 39 189 —
Xy 22 195 -
X 23 195
Xu 45 195 -
X 0 200 -
X 24 241 -
X, 28 262 -
X7 28 267 -
Xy 28 267 -

X 25 270 -
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The best feasible solution of Example Problem ty the algorithm Best Combination is {X., X,

Xow X with cost 189. This solution is equivalent to the path in the following figure.
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fFigure 21 Solution of Example Probizm by Best Combination Algorithm

3. Formulation of Modified Transportation Problem( MTP)

3.1 initial MTP Table

The first bottleneck of formulating CSP into tie Transportation Problem (TP) is how to fix
the number of demand and supply. In the genera TP table of CSP, we cannot fix them because
the number of paths are varied. We can circum ent this bottleneck by creating dummy paths,

from super source (8 to super sink 70, which has 10 physical flights on them.
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iFigure 31 Basic Conczptual Graph of MTP

The general format of the initial MTP table iz shown in the following table. The variable X,

represents the number of duminy ares. It can be varied from 0 to n according to the number of

allocated paths in the corresponding solution. We assumie X . is 0 in the initial status. The other
variables are binary to take the value O or 1.

For simplicity, we do not write the cost in t ¢ table for the time being. It is worth noting
that the cost C. of the wvariable X. is assuried to be (. The costs of each flights from
super —source and to super —sink, £, and C.. in the first row and first column respectively, are
assumed to be half the crew cost. The other cost. are the actual transition costs as given in the

inital data.
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(Table 6) Initial MTP Table

Flight 0 1 2 n—1 n Total

0 0 1 1 1 1 n

1 1 0 0 0 0 1

2 1 0 0 0 0 1
n—1 1 0 0 0 0 1

n 1 0 0 0 0 1
Total n 1 1 1 1

1) n is the number of flight

3.2 Problem Reduction in MTP Table

The problem size of the MTP formulation of CSYF is to be reduced in three ways. The main cri-
teria for these reductions are the starting time of flight, the work-duty-time and the crew cost.
The first way to reduce the problem size is to eliminate the transition variable X in which the
starting time of flight i is greater than or equal to the starting time of flight j. If we rearrange
the flights in the ascending order of the starting times, we do not need to consider the tran-
sition from the flight with later starting time to the flight with the earlier starting time. This
condition reduces the MTP table almost to half the original table.

The second way to reduce the MTP table is tc eliminate again the variables X, in which the
matchings between flight i and flight j are physically impossible owing to the transition time be-
tween them or the work-duty-time. The other variables can be removed from the feasible
solutions. They cannot be included in the feasible solutions.

The third way to reduce the MTP formulation size is to remove any transition variables with
greater transition costs (; than the crew cost f:om the feasible solitions, as long as they are
not the only variable in that row or column. Anv feasible solutions with these variables can be
improved just by breaking them into two paths In our CSP we take the crew cost into con-
sideration because it guarantees the global optimwums. Al the costs between super source/sink

and flights, which will be called “depot cost” hereafter, have a special relationship between them.
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We assume the depot costs are half the crew cost It is reasonable to assume that the crew cost
is shared equally by the inflows from super sourze and the outflows to the super sink because

the inflows and outflows must be the same in the feasible solutions.
The example of the initial MTP table for Example Problem is shown in the following table.

The variables X in which i is not less than j arc reduced by the first reduction rule of starting
time, the variables X, X and X. are removed by the second reduction rule of
work —duty —time and the variables X, X,, X, and X, are excluded from the table by the

third reduction rule of crew cost. The total cost of this MTP table is 189 as calculated by the
algorithm Best Combination.

{Table 7) Initial MTP Taile of Exampte Problem

F 0 1 2 3 4 5 6 7 Total U,
0 4 1 1 0 1 o* 0° 0 7 -
1 0 5 * * 024 0 1<1 * * 1 -
2 0 5 * * 1 * 028 O’ * 1 —
3 1% . . . o' . 0 0” 1 -
4 O 5 * * * * 023 1*] * 1 —
3 1 * * * * * * (y ] 1 _
6 0 * * * * * * 1 1 i
7 1 * * * * * * * 1 -
Total 7 1 1 1 1 1 1 1
v, - - - - - - - —

1) superscript is the transition cost

2) * is the removed variable

3.3 Regeneration of MTP Table

The MTP table of the CSP has a slightly diffe-ent structure from the ordinary TP table. The
black hole, denoted by X. in the MTP table, is one of such special characteristics. This black

hole X absorbs any basic variables in the first row or first column of the MTP table, making
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one of them degenerate. Both the summation of first row and first column must be exactly the
same as the flight number. The value of black hale, which represents the number of dummy arcs,
is the difference between the flight number and the path number.

Because of this degeneracy, which occurs very frequently in the MTP table, we cannot confirm
the chain reaction to make the closed loop with basic variables starting from each non—basic
variable.

For a general mXn Transportation Problem, with n>m, with whole number supply and re-
quirement levels, we change a; to a,te & to b --me, and leave the remaining levels unaltered.
For computer applications it is sufficient to pu: e=1/2n. This regencration, which can be done
at any step of the TP algorithm, is performed isually in the beginning of the beginning of the
problem formulation [3].

Let us show the example of the regenerated IMTP table of Example Problem in the following
table. The original MTP table had only 11 basic variables, so 4 variables were degenerated. The
variables Xy, Xy, X, and X in the first row :re degenerated to increase X, from 0 to 4. The
crew number k is decreased io from 7 to 3. In :7e same manner we can confirm the variables
X Xon X and X in the first column are degenerated.

Owing to the degeneration, we could not make & closed loop in this table to improve the pres-
ent solution. To regenerate this table, we add t.w very small number ¢ in the first column and
total. The number of basic variables are increasod from 11 to 15 The number with positive or

negative sign denotes the change value, and the cther unchanged values are basic variables.

(Table 8> Regenerated MTI Table of Example Froblem

F 0 1 2 3 5 6 T | Total | U,

0 JERC T I 507 | | 0T | L | S0 | T 0

1 & . . —wr T : - 14e | o

2 S . P 287 | +14 . 1te | 5

I}
3 Le' | = : . X « 3% 28t | e | 25 |
4 & . . . ' L e R WU
|

5 e |~ : T e TR

6 & . . . - . ! 1te ”:77
T 1+4-¢° * * * ) * * * 1+ 25 !

Total | 7-+ve | 1 1 [ T 1 T
v, 0 5% | 5 5 SR
l

1) superscript is the transition cost
2)* is the removed variable
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By the general improving method for the ordiniry TP’s, we get the following best MTP table
of Example Problem from the regenerated MTP .able. This is the best feasible solution which
cannot be improved any more because all the chinge values in the table are positive. But this
best solution is not feasible because the time duration of one of its path is 510 minutes which
exceeds the wok-duty-time. In case the best solut on is feasible, it must be the optimal solution
at the same time.

It is worth noting that the number of non-ba:ic variables in the MTP table is constant all
through our algorithm NEST. Iet us name it neighbour number which is the number of
neighbours of each node. In our Example Problem the neighbour number is 13. This number will

be used to check the redundancy of nodes with th. same values.

(Table 9> MTP Tabie of Best jolution of Example Problem

F 0 1 2 3 4 5 6 7 | Total | U,
0 5+ | 17 17| 4507 | A5 | 4277 | 4507 | 4507 | 74e |0
1 23 | S VE B S ¢ . . Ite | 2
2 & . . 1 . +5% | 4ot | e | 25
3 & . . . o U | 428" | Lte | 25
4 26" . . . S B T TR 1+e | 25
5 1+e | - - . . . ol 1t |
6 & . . . . . . o 14e |25
7 1+6 | . - . . . . l+e | 25

Total | 7+8¢ | 1 1 1 1 1 1 1
v, 0 25 25 | -25 | X ~2 | =25 | =25

1) superscript is the transition cost

2) * is the removed variable

At this point it is worth discussing the methoc to make a closed loop in the MTP table. Gen-
erally each non—basic variable can form only on¢ closed loop. The basic feasible solution in the
TP is optimal, if and only if the change value A;> {) for every non—basic variables X, 4].

where A; = C;—U,—V. If X; is a non—hasic variable. A; is the rate of change value of objec-
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tive function changes as X is increased. U, is the multiple of original row i and V; is the mul-

tiple of original row (m=j) that has been subtracted (directly or indirectly) from original row 0
by Simplex Method during all iterations leading to current Simplex Table.

We can reduce the procedure to find the loop owing to the peculiar structure of the MTP
table. As shown in the formulation in Section 1, the MTP is very similar to the AP. Except for
the first row and column for depot, the value of the other rows and columns must be one. This
characteristic implies we can form a loop in a very efficient way to save time. For example let
us consider the loop starting from Cy in the abiove MTP table of the best solution of Example
Problem. Suppose we choose Cy, as the next basic variable to be added to Cy. Then by the gen-
eral method all the next 6 candidates, all the basic variables except for C, in the first column,
should be considered. It is easily recognised that this method soon produces an enormous tree
combination of possible loop candidates. We car avoid this problem, if the loop encounters the
first column or row, just by going back to the other direction from the starting point. In our
example we choose Xy, and X, X, X, consecutively until the loop encounters again another

first column or row.

4. Network Search for Optimal Srolution

We consider in this section the network search algorithm by the MTP network graph. This
network can be made with the costs of all M'I'P tables, i. e. the value of objective function.
Unfortunately we cannot guarantee the optimaiity of the solution obtained by the heuristic
algorithms discussed in Section 2. We cannot improve our initial solution by the stream-ined al-
gorithm as in the ordinary TP approach because the additional constraints of the
work-duty-time are not considered in the MTP table.

The general approach to this kind of problems is the tree search in which all the plausible
solutions are examined. This approach is, however, not suitable for the CSP’s of large size in a
real life because the nodes generated during the tree search are too numerous.

Instead we can trace the optimal solution by checking the enlarged neighbours of each node
from the best solution. We search the better feasible solutions in the MTP graph on a system-
atic order to avoid the biased local solution. The combinations of all possible paths are checked
until the optimal or satisfactory solution is obtained.

Consider the following partial sub-graph of Example Problem in which node number presents
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the total cost of the MTP table. The lines between each node represent the direct transform-
ation of each other. We exclude the nodes between 350 and 189 which is not necessary in this
case. Starting from the node of the best solution. 145, we can make the solution set for the bet-

ter solution with the neighbours of each node. Th s solution set S is:
S=1Z1U (@)forZ <z

where Z* is the node of the upper bound
Z' is the node of the best solution
G' is n-th outflow function in the graph
# 1is the number of flight

In our Example Problem, the first outflows of node 145 are the nodes 150, 172, 173, 184 and
195. The node 195 is excluded from consideratior because it is higher than the upper bound. In
the same manner the node 178 is generated on tle second outflow function from the node 145 as
well. The solution set includes all the nodes between 189 and 145. All possible paths to improve
the upper bound 189 must be included in this se'. So we have the solution space with 6 nodes in
total, 145, 150, 172, 173, 178 and 184. The searching path starts from the node 145 and ends at
the node 184. The whole searching path, presentec with the heavy line in the following figure, is:

45 —— 150 ——- 172 —— 173 —— 173 —— 145 —— 184

If all the nodes in the solutions set are found to be infeasible, the present upper bound must
be optimal because it cannot be omproved any niore. In case a new feasible solution is found, we
rearrange the solution set and start algorithm again.

The solution is feasible only when it satisfies all the constraints of the problem. In our case
all the time duration of the paths must not be greater than the work-duty-time. In the other

variants of the CSP, of course, other constraints would be added to be satisfied.
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5. Computational Results

The algorithm NEST is tested on IBM PC ‘AT with the FORTRAN compiler for the
randomly generated problems. The results are sumr marised in Table 10, 11, and 12. Figures 5 and
6 show the general trend of the computing tiiie as the iteration number increases. These
computational results show that the large size CS?'s in the real world can be tackled by our al-
gorithm NEST.

In Table 10, the heuristic algorithm for the in‘tial solution provides very good upper bounds
for the network search. Statistics of this algorith n shows that most initial solutions are within
8% gap from the optimums. Al these heuristic results are obtained within 2 seconds for the
CSP’s with up to 30 flights.

With the algorithm NEST we solve large s:ze CSP’s which cannot be tackled by other
algorithms on the PC level. The maximum size i flights to be solved by other algorithms is
about 50 flights. In Table 11 we summarised the computational results of the algorithm NEST
for the CSP’s with up to 100 flights. These resul' ¢ are obtained on the PC up to its maximum
capacily, so we expect that large size CSP’s can be solved, hopefully in a short period of {ime,
on mainframes or even on super computers.

As shown in Figure 5, however, computing timr 23 are biased on the last improving step. For
example, 82.8% of the entire computing times of the 10000 iterations are used only for the last
1% iterations. {Figure 6} provides the simple re:son for this biased time distribution. Most of
the additional times are used for searching the necessary nodes not for computing the MTP
tables. The searching time and its ratio to the tstal computing time also increases as the iter-
ation number increases.

In summary the computational resulis show thw we can tackle large size CSP’s. The problem
size increases polvnomially by our formulation. 7t least on the aspect of problem size, we can
solve the large size problems. Additional resear ‘hes, however, to reduce the biased searching
times of nodes are needed. Similar results have bean reported that for large CSP's with over 800
flights the run time of the main procedure is ony 0.1% of the total computing time, while the

other 99.9%; are used for pairing generation and v ductions [10].
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(Table 10) Performance of NEST Algorithm for CSP
Size Intitial Final

No. F D(%) A G(%) zZ* N

1 6 32 200 0.0 200 0

2 7 43 189 0.0 189 6

3 8 33 150 0.0 150 0

4 9 28 200 0.0 200 0

5 10 31 250 0.0 250 2

6 11 18 5693 0.0 5693 2

7 12 19 4484 0.0 4484 0

8 13 15 6600 0.0 6600 4

9 14 13 5650 79 5238 30
10 15 17 4500 0.0 4500 8
11 16 12 5374 5.3 5291 178
12 17 16 7700 0.0 7700 46
13 18 13 7920 0.0 7920 27
14 19 11 8632 0.0 8632 5
15 20 12 10172 6.3 9568 211
16 21 10 11900 0.0 11900 3
17 22 11 11845 6.5 10184 125
18 23 10 12787 5.2 12159 42
19 24 10 13962 0.0 13962 0
20 25 13556 0.0 13556
21 26 17444 0.0 17444 5
22 27 16125 1.2 15950 42
23 28 10 17069 7.7 15849 2237
24 29 9 12643 0.1 12576 18
25 30 7 16104 6.2 15164 151

1)F ! Number of flight task

2) D(%) : Density of initial MTP table (%)

3) Z° : Initial solution by geuristic algorithm

4) G(%) : Gap between Z° and Z*

5) Z* : Final solution by NEST

6) N

. Node number of network search
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{Table 11) General Performance of NEST Algorithm

Flight Density Node Time
6 Min. 15.7 0 1.84
! Ave. 34.5 11 293

10 Max. 59.7 127 187.90
i1 Min. 8.5 0 4.89
' Ave. 14.2 45 27.29
20 Max. 46.6 327 1674.49
21 Min. 4.8 0 16.76
| Ave. 8.9 50 149.68
30 Max. 33.1 2237 3748.34
31 Min. 3.3 0 56.47
) Ave. 6.5 74 229.64
40 Max. 30.2 2627 9345.92
41 Min. 2.4 7 51.67
) Ave. 4.8 115 379.29
50 Max. 5.3 5474 28625.91
61 Min. 14 0 46.74
$ Ave. 3.1 153 427.16
70 Max. 5.8 6027 4384591
71 Min. 1.1 10 76.74
| Ave. 2.6 196 654.63
80 Max. 4.3 6928 87745.97
81 Min. 0.% 12 66.71
) Ave. 2.1 215 824.68
90 Max. 3.8 8359 132143.82
91 Min. 0.7 46 115.37
| Ave. 1.t 467 1059.76
100 Max. 3.5 14312 345777.43

1) Density is of initial MTP table (%)
2) Node is the node number in MTP network
3) Time is seconds on IBM PC/AT
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6. Conclusion

In this paper we have considered an algorithn, the Network Enlarging Search Technique
(NEST), for the Crew scheduling problem (CSP) based on the transportation formulation. We
have transformed the CSP into a Modified Transprtation Problem (MTP) with the limited net-
work flow constraints. The other constraints, usi ally the work-duty-time constraints, are con-
sidered only when they are necessary for the feasil ility test of the solution.

The problem size can be reduced to the extent vhich is manageable by present-day computers
by our algorithm. Moreover NEST algorithm &n be extended to the other combinatorial
problems such as General Crew Scheduling Problen (GCSP) and Vehicle Routing Problem (VRP)
with slight modifications.

We propose also a heuristic algorithm based or the concept of the best combination with the
aim of obtaining good upper bounds for the netwecrk search of the optimal solutions. This algor-
ithm provides the upper bounds which are within 8% from the optimal solution. The initial up-
per bound is improved to the optimum by networl search algorithm.

To trace the optimum, we make a network with the values of the MTP table. In this network,
we can trace the optimal solution by enlarging aid checking the neighbours of each node from
the best solution without additional constraints.

The computational results also show that we c:n solve CSP’s of large size in the real world.
Through the extensive computational tests on the CSP’s up to 100 flights, we confirm this algor-
ithm could be applied to solve the large size CSI’s in a real sense. This algorithm is, however,
not so efficient in terms of computing time. We 1>und that most of the computing times of the
large problems are used for searching the necessary nodes not for the solving MTP tables.
Further researches to improve the searching proce iures are expected.

In summary, it might be possible to say that tae large size CSP’s could be tackled by our al-

gorithm NEST. In our algorithm the problem fornulation size increases polynomially.
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