• Title/Summary/Keyword: Optimal Sintering

Search Result 129, Processing Time 0.031 seconds

Fabrication of Barium Oxide Ferrite Magnet-II (바리움 훼라이트 자석의 시작 - II)

  • 백용현
    • 전기의세계
    • /
    • v.21 no.6
    • /
    • pp.17-20
    • /
    • 1972
  • The magnetic properties of Ba-Ferrite ( $M^{+2}$O.nF $e_{2}$ $O_{3}$ is highly improved under the condition of composition ratio n=4.4 when B $i_{2}$ $O_{3}$ is added to Ferrite, the adding amount and sintering temperature which affect the magnetic properties were investigated and the following results; were obtained; 1. Magnetic properties are varied with B $i_{2}$ $O_{3}$ content and singering temperature, and coercive force and residual induction can be improved with B $i_{2}$ $O_{3}$. 2. The optimal content of B $i_{2}$ $O_{3}$ amount is about 4 mol %, 3. Without the addition of B $i_{2}$ $O_{3}$, the optimal sintering temperature is about 1300.deg. C, but when 4 mol % of B $i_{2}$ $O_{3}$ is added, the optimal sintering temperature falls to the range of 900.deg. C to 1100.deg. C and it also improves magnetic properties. 4. Residual induction increases as the singering temperature is raised to 1100.deg. C. Coercive force also increased as the sintering temperature is raised to 1000.deg. C, but it rapidly decreases when sintering temperature goes beyond 1000.deg. C. 5. Only a negligible change may be noticed in the decrease of Curie temperature by the addition of about 4 mol % of B $i_{2}$ $O_{3}$.

  • PDF

Characteristics of the High-Tc Superconductor in the Bi System Prepared by the 2nd, Sintering Process (Bi계 고온 초전도체의 2차 소결 후 특성)

  • 조한대;박용필;차인수;이경섭;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.58-63
    • /
    • 1992
  • Effects of the second sintering process on the superconducting characteristics of the (Bi, Pb)SrCaCuO system have been studied. It was found that the optimal calcining temperature of mixed powder may be proper to 820$^{\circ}C$ and the optimal sintering temperture was determined on 845$^{\circ}C$. The 2212 phases transitioned the 2223 phasses during the sintring process and zero resistance was attained at 108 K for the samples sintered for 264 hr. The 2223 phases changed into the 2212 phases and nonsuperconducting phases by the second grinding process. And the 2223 phases did not recover easily by the second sintering process.

  • PDF

The Development of Aluminum Alloy Piston for Two-Stroke Cycle Engine by Powder Forging

  • Park, Chul-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.173-177
    • /
    • 2013
  • The purpose of this paper is to investigate the influences on mechanical properties of two-stroke cycle motor pistons manufactured by casting, conventional forging and powder forging, through the comparison of characteristics, merits and disadvantages of each forming technology. For each forming technology, the optimal process parameters were determined through the experiments for several conditions, and microstructure, hardness, tensile strength and elongation of pistons are compared and analyzed. In conventional forging process, material temperature was $460^{\circ}C$ and the die temperature was $210^{\circ}C$ for the Al 4032. The optimal condition was found as solution treatment under $520^{\circ}C$ for 5 hours, quenching with $23^{\circ}C$ water, and aging under $190^{\circ}C$ for 5 hours. In powder forging process, the proper composition of material was determined and optimal sintering conditions were examined. From the experiment, 1.5% of Si contents on the total weight, $580^{\circ}C$ of sintering temperature, and 25 minutes of sintering time were determined as the optimal process condition. For the optimal condition, the pistons had 76.4~78.3 [HRB] of hardness, and 500 [MPa] of tensile strength after T6 heat treatment.

Application of rate-controlled sintering into the study of sintering behavior of boron carbide (탄화붕소 소결 거동 연구를 위한 율속제어소결의 적용)

  • Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2015
  • Under rate-controlled sintering, furnace power is controlled to maintain a specific specimen contraction rate. This thermal processing method guarantees continuous process with a minimum thermal energy applied over time and makes it possible to control the density of the sintered body precisely. In this study, the rate-controlled sintering is applied to the sintering of $B_4C$ in order to investigate how rate-controlled sintering variables can affect the sintering behavior and/or grain growth behavior of $B_4C$ and how the results can be interpreted using sintering theories to draw an optimal sintering condition of the rate-controlled sintering. Further, the applicability of the rate-controlled sintering into the study for sintering of unknown materials is also considered.

A sintering Behavior of Glass/Ceramic Composite used as substrate in High Frequency Range (고주파대역에서 기판으로 쓰이는 Glass/Ceramics Composite의 소결거동)

  • 이찬주;김형준;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.302-307
    • /
    • 2000
  • The objective of this study was to investigate the sintering behavior, crystallization characteristic of glass-ceramic and optimal sintering condition on the glass/ceramic composite for fabricating substrate of LTCC. Glass/ceramic composite was made from alumina powder and glass frit, which was composed of SiO2-TiO2-RO-PbO/(R: Ba, Sr, Ca), and was sintered for 0, 30, 60minutes in the temperature range from 700$^{\circ}C$ to 1000$^{\circ}C$. Properties of frit and glass/ceramic compsoite were analyzed by DTA, XRD, SEM and Network Analyzer and so on. Main sintering mechanism was densification occurred above 730$^{\circ}C$ by viscous flow and crystallization starting about 780$^{\circ}C$ affected sintering also. So viscous flow was affected by sintering temperature, duration time, and creation of crystallization phase etc. From this study, it was possible to fabricate glass/ceramic composite by changing sintering temperature and duration time.

  • PDF

Effect on Mechanical Properties of Tungsten by Sintering Temperature (텅스텐 특성에 대한 소결온도의 영향)

  • Park, Kwang-Mo;Lee, Sang-Pill;Bae, Dong-Su;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2021
  • A tungsten material using a pressure sintering process and a titanium sintering additive was prepared to evaluate the microstructure, and mechanical properties of flexural strength and hardness. In addition, the reliability on each hardness data was evaluated by analyzing the distribution of the hardness of the tungsten material using the Weibull probability distribution. In particular, the optimal manufacturing conditions were analyzed by analyzing the correlation between the sintering temperature and the mechanical properties of the tungsten sintered body. Although the sintering density of the tungsten material was hardly changed up to 1700 ℃, but it was increased at 1800 ℃. The hardness of the tungsten sintered material increased as the sintering temperature increased, and in particular, the tungsten material sintered at 1800 ℃ showed a high hardness value of about 1790 Hv. It showed relatively excellent flexural strength at a sintering temperature of 1800 ℃.

A Study on the Combustion Characteristics of Coke and Anthracite in an Iron Ore Sintering Bed (소결층 내에서의 코크스와 무연탄의 연소 특성 비교 연구)

  • Yang, Won;Yang, Kwang-Hcok;Choi, Sang-Min;Choi, Eung-Soo;Ri, Deok-Won;Kim, Sung-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.141-148
    • /
    • 2004
  • Coal combustion in an iron ore sintering bed is a key parameter that determines quality of the sintered ores and productivity of the process. In this study, effects of the different types of coal coke and anthracite - on the combustion in the iron ore sintering bed are investigated by modeling and experiment. Fuel characteristics of coke and anthracite are observed through a few basic analysis and thermo-gravimetric analysis. It was found that coke has a higher reactivity than anthracite due to the difference of surface area and density. Those characteristics are reflected to the 1-D unsteady simulation of the iron ore sintering bed. Calculation results show that different reactivity of the fuel can affect the bed combustion, which implies the further investigation should be performed for obtaining optimal combustion conditions in the sintering bed.

  • PDF

Low temperature sintering properties of the $Pb(Mg_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zi,Ti)O_3$ ceramics with the addition of sintering aids (소결조제 첨가에 따른 PMW-PMN-PZT 세라믹의 저온소결 특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Lee, Chang-Bae;Jeong, Yeong-Ho;Paik, Dong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.350-351
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric transformer, PMW-PMN-PZT system ceramics were manufactured with the addition of sintering aids, and their dielectric and piezoelectric characteristics were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilon}r$), electromechanical coupling factor(kp) and mechanical quality factor(Qm) showed the optimal value of 1043, 0.44 and 793, respectively, for multilayer piezoelectric transformer application.

  • PDF

Piezoelectric Properties of 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO Ceramics with a Sintering Temperature (소결 온도에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO 세라믹스의 압전 특성)

  • Lee, Dong-Hyun;Lee, Seung-Hwan;Lee, Sung-Gap;Lee, Ku-Tak;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.543-546
    • /
    • 2011
  • We studied sintering temperature to enhance the piezoelectric properties of $0.98(Na_{0.5}K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ta_{0.83})O_3$+0.01wt%ZnO (hereafter NKN-LST+ZnO) lead free piezoelectric ceramics. The synthesis and sintering method were the conventional solid state reaction method and sintering was executed at $1,080\sim1,120^{\circ}C$. We found that NKN-LST+ZnO ceramics at optimal sintering temperature showed the improved piezoelectric properties at the optimal sintering temperature. The NKN-LST+ZnO ceramics show good performance with piezoelectric constant $d_{33}$= 153 pC/N sintered at $1,090^{\circ}C$. The results reveal that NKN-LST+ZnO ceramics are promising candidate materials for lead-free piezoelectric application.

Fabrication and Characterization of Porous Hydroxyapatite Scaffolds

  • Kim, Min-Sung;Park , Ih-Ho;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.680-685
    • /
    • 2009
  • Using a polyurethane foam replica method, porous hydroxyapatite scaffolds (PHS) were fabricated using conventional and microwave sintering techniques. The microstructure and material properties of the PHS, such as pore size, grain size, relative density and compressive strength, were investigated at different sintering temperatures and holding times to determine the optimal sintering conditions. There were interconnected pores whose sizes ranged between about 300 ${\mu}m$ and 700 ${\mu}m$. At a conventional sintering temperature of 1100$^{\circ}C$, the scaffold had a porous microstructure, which became denser and saw the occurrence of grain growth when the temperature was increased up to 1300$^{\circ}C$. In the case of microwave sintering, even at low sintering temperature and short holding time the microstructure was much denser and had smaller grains. As the holding time of the microwave sintering was increased, higher densification was observed and also the relative density and compressive strength increased. The compressive strength values of PHS were 2.3MPa and 1.8MPa when conventional and microwave sintering was applied at 1300$^{\circ}C$, respectively.