• Title/Summary/Keyword: Optimal Process

Search Result 6,100, Processing Time 0.04 seconds

Optimal Design of Stiffened Laminate Composite Cylindrical Shells (보강복합재료원통셸의 최적설계)

  • 원종진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.12-18
    • /
    • 1998
  • The optimal design for stiffened laminate composite cylindrical shells under combined loads is studied by a nonlinear mathematical search algorithm. The optimal design is accomplished with the CONMIN. several types of buckling modes with maximum allowable stresses and strains are included as constraints in the optimal design process, such as general buckling, panel buckling with either stringers or rings smeared out, local skin buckling, local crippling of stiffener segments. Rectangular or T type stringers and rectangular rings are used for stiffened laminate composite cylindrical shells.

  • PDF

The Simulation and Control of the Reactive Distillation Process for Dimethylcarbonate(DMC) Production

  • Jang, Yong-Hee;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1215-1220
    • /
    • 2004
  • Reactive distillation (RD) is a combination process where both separation and reaction are considered simultaneously in a single vessel. This kind of combination to enhance the overall performance is not a new attempt in the chemical engineering areas. The recovery of ammonia in the classic Solvay process for soda ash of the 1860s may be cited as probably the first commercial application of RD. The RD system has been used for a long time as a useful process and recently the importance of the RD is enlarged more and more. In addition to that, the application fields of RD are diversely diverged. To make the most of the characteristic of RD system, we must decide the best operating condition under which the process shows the most effective productivity and should decide the best control algorithm which satisfies an optimal operating condition. Phosgene which is a highly reactive chemical is used for the production of isocyanates and polycarbonates. Because it has high reactivity and toxicity, its utilization is increasingly burdened by growing safety measures to be adopted during its production. Dimethyl Carbonate (DMC) was proposed as a substitute of phosgene because it is non-toxic and environmentally benign chemical. In this study, RD is used for DMC production process and the transesterification is performed inside of column to produce DMC. In transesterification, the methanol and ethylene carbonate (EC) are used as the reactants. This process use homogeneous catalyst and the azeotrope exists between the reactant and product. Owing to azeotrope, we should use two distillation columns. For this DMC production process, we can suggest two configurations. One is EC excess process and the other is methanol excess process. From the comparison of steady state simulation results where the Naphtali-Sandholm algorithm is used, it showed the better performance to use the methanol excess process configuration than EC excess process. Then, the dynamic simulation was performed to be based on the steady state simulation results and the optimal control system was designed. In addition to that, the optimal operating condition was suggested from previous results.

  • PDF

Realtime Traffic Control of Traffic Networks using Analytic Hierachy Process (계층분석방법을 이용한 교차로망의 실시간 교통제어)

  • Jin, Hyun-Soo;Hong, Yoo-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.47-53
    • /
    • 2010
  • The paper presents a method for decision the optimal cycle time during the vehicle traffic control in single intersection with AHP. To solve this uncertainty optimization problem, the optimization index in the form of linear addition and fuzzy measurement is assumed and fuzzy integral is used. Examples of solution for two cases of optimal cycle time in two traffic controller are presented and compared.

An Optimal Plane Strain and Axisymmetric Extrusions of Rate Sensitive Materials (변형율속도 제어에 의한 평면변형 및 축대칭 전방 압출)

  • Lee, Jong-Su;Hong, Seong-Seok;Jo, Nam-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.2
    • /
    • pp.116-121
    • /
    • 1992
  • The optimal extrusion process for the rate sensitive materials have been developed in this study. The preliminary designs of the die shapes have been carried out to maintain constant strain rate during extrusion and the upper bound approach has been applied to define the process variables (the die entrance velocity and the die length) including the rheology during deformation. The result for the axisymmetric extrusion process has been verified with rigid-viscoplastic finite element analysis. It has been confirmed that the optimal die has wider band of constant strain rate than the conical one does.

  • PDF

The Optimal Design of gas oven assembly line with the Simulation and Evolution Strategy (시물레이션과 진화 전략을 이용한 가스 오븐 조립라인의 최적 설계)

  • Kim, Kyung-Rok;Lee, Hong-Chul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.715-718
    • /
    • 2009
  • The assembly line is one of the typical process hard to analyze with mathematical methods including even stochastic approaches, because it includes many manual operations varying drastically depending on operators' skills. In this paper, we suggest the simulation optimization method to design the optimal assembly line of a gas oven. To achieve the optimal design, firstly, we modeled the real gas oven assembly line with actual data, such as assembly procedures, operation rules, and other input parameters and so on. Secondly, we build some alternatives to enhance the line performance based on business rules and other parameters. The DOE(Design Of Experiment) techniques were used for testing alternatives under various situations. Each alternatives performed optimization process with evolution strategy; one of the GA(Genetic Algorithm) techniques. As a result, we can make about 7% of throughputs up with the same time and cost. By this process, we expect the assembly line can obtain the solution compatible with their own problems.

  • PDF

Demand Variability Impact on the Replenishment Policy in a Two-Echelon Supply Chain Model (두 계층 공급사슬 모형에서 발주정책에 대한 수요 변동성 영향)

  • Kim Eungab
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.3
    • /
    • pp.111-127
    • /
    • 2004
  • We consider a supply chain model with a make-to-order production facility and a single supplier. The model we treat here is a special case of a two-echelon inventory model. Unlike classical two-echelon systems, the demand process at the supplier is affected by production process at the production facility as well as customer order arrival process. In this paper, we address that how the demand variability impacts on the optimal replenishment policy. To this end, we incorporate Erlang and phase-type demand distributions into the model. Formulating the model as a Markov decision problem, we investigate the structure of the optimal replenishment policy. We also implement a sensitivity analysis on the optimal policy and establish its monotonicity with respect to system cost parameters.

Heuristic algorithm to assign job in inspection process (검사공정의 작업배분을 위한 휴리스틱 알고리즘 개발)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.253-265
    • /
    • 2008
  • In this paper, we developed a heuristic algorithm to assign job to workers in parallel line inspection process without sequence. Objective of assigning job in inspection process is only to assign job to workers evenly. But this objective needs much time and effort since there are many cases in assigning job and cases increase geometrically if the number of job and worker increases. In order to solve this problem, we proposed heuristic algorithm to assign job to workers evenly. Experiments of assigning job are performed to evaluate performance of this heuristic algorithm. The result shows that heuristic algorithm can find the optimal solution to assign job to workers evenly in many type of cases. Especially, in case there are more than two optimal solutions, this heuristic algorithm can find the optimal solution with 98% accuracy.

Modeling, simulation and control strategy for the fuel cell process (모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

Design of bivariate step-stress partially accelerated degradation test plan using copula and gamma process

  • Srivastava, P.W.;Manisha, Manisha;Agarwal, M.L.
    • International Journal of Reliability and Applications
    • /
    • v.17 no.1
    • /
    • pp.21-49
    • /
    • 2016
  • Many mechanical, electrical and electronic products have more than one performance characteristics (PCs). For example the performance degradation of rubidium discharge lamps can be characterized by the rubidium consumption or the decreasing intensity the lamp. The product may degrade due to all the PCs which may be independent or dependent. This paper deals with the design of optimal bivariate step-stress partially accelerated degradation test (PADT) with degradation paths modelled by gamma process. The dependency between PCs has been modelled through Frank copula function. In partial step-stress loading, the unit is tested at usual stress for some time, and then the stress is accelerated. This helps in preventing over-stressing of the test specimens. Failure occurs when the performance characteristic crosses the critical value the first time. Under the constraint of total experimental cost, the optimal test duration and the optimal number of inspections at each intermediate stress level are obtained using variance optimality criterion.

Robotic rim deburring technique in car wheel (로보트 이용 자동차 휠의 림 디버링)

  • 박종오;전종업;조의경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1144-1148
    • /
    • 1991
  • The problems occurred when developing a automatic wheel deburring system are to make effective flexibility in model change and the irregularity of the position/shape of the burr, to select optimal robotic manufacturing process and to develope optimal end effector. The locations where burr exists are on flange, rim and spoke. Here will be discussed the optimal solution for the removal of rim burr by using robot. The research can be summarized as the automatic robot path generation by recognizing rim contour and automatic deburring process technique. Various rim contour data is generated automatically when the sensor which is fixed to robot is moving with the parallel motion to the wheel center axis and this generated data is transferred to the data storage system and converted to the robot path data. The robotic tool system which is suitable to the rim deburring process is developed by integrating tool, compliance function and sensor. And factory automation system controlled by robot controller and PC is developed. This system shows good productivity and flexibility.

  • PDF