• Title/Summary/Keyword: Optimal PMU placement

Search Result 9, Processing Time 0.02 seconds

An Initial Placement Strategy for Optimal Placement of Phasor Measurement Units in Power Systems (페이저 측정기 치적배치를 위한 초기 배치 전략)

  • Cho, Ki-Seon;Shin, Joong-Rin;Park, Jong-Bae;Chae, Myung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.342-344
    • /
    • 2002
  • This paper presents a new strategy to find starting points for placing optimally Phasor Measurement Units(PMUs). The performance of the starting point, initial placement set of PMUs, affect critically the computational burden and/or time, because the Optimal PMU Placement (OPP) problem is formulated the combinatorial optimization. By analyzing the properties of OPP solutions on IEEE sample systems in detail, a new strategy for initial PMU placement, in this paper, is proposed. To verify the performance of the suggested strategy, the comparison with the existing strategy and the new one, on IEEE sample systems. is performed. By using the new strategy, the numbers of search spaces to solve the OPP problem is drastically decreased.

  • PDF

Optimal Placement of the Phasor Measurement Units in Power System (전력계통의 페이저 측정기 최적배치)

  • Kim, Jae-Hun;Jo, Gi-Seon;Kim, Hoi-Chul;Shin, Jung-Rin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.313-322
    • /
    • 2000
  • This paper presents optimal placement of minimal set of Phasor Measurement Units (PMU's) and observability analysis of the network with PMU's. In order to find a observable system, a symbolic method which directly assigns an appropriate symbol for measurement or pseudo-measurement to every entry of node-branch incidence matrix is proposed. It is much simpler and easier to analyze the observability of the network with PMU's than the conventional ones. For the optimal PMU placement problem, two approaches which are based on a modified Simulated-Annealing (SA) method and a Direct Combination method are proposed. Some case studies with IEEE sample system are made to show the performance of the proposed methods are almost alike and more effective than the conventional simulated-annealing method. It is also shown that the Direct Combination method is more effective than the modified simulated-annealing one in the sense of computation burden. The results of this study showed also that the accuracy of power system estimation and system observability can be improved the proposed PMU placements.

  • PDF

Optimal Placement of Synchronized Phasor Measurement Units for the Robust Calculation of Power System State Vectors (견실한 전력계통 상태벡터 계산을 위한 동기 페이저 측정기 최적배치)

  • Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.75-79
    • /
    • 2000
  • This paper proposes the optimal placement with minimum set of Phasor Measurement Units (PMU's) using tabu search and makes an alternative plan to secure the robustness of the network with PMU's. The optimal PMU Placement (OPP) problem is generally expressed as a combinatorial optimization problem subjected to the observability constraints. Thus, it is necessary to make a use of an efficient method in solving the OPP problem. In this paper, a tabu search based approach to solve efficiently this OPP problem proposed. The observability of the network with PMU's is fragile at any single PMU contingency. To overcome the fragility, an alternative scheme that makes efficient use of the existing measurement system in power system state estimation proposed. The performance of the proposed approach and the alternative scheme is evaluated with IEEE sample systems.

  • PDF

Meter Optimal Placement in Measurement System with Phasor Measurement Unit (페이저 측정 시스템의 측정기 최적배치)

  • Kim, Jae-Hoon;Cho, Ki-Seon;Kim, Hoi-Cheol;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1195-1198
    • /
    • 1999
  • This paper presents optimal placement of minimal set of phasor measurement units(PMU's) and observability of measurement system with PMU. By using the incidence matrix symbolic method which directly assigns measurement and pseudo-measurement to incidence matrix, it is much simpler and easier to analyze observability. The optimal PMU set is found through the simulated-annealing(SA) and the direct combinational method. The cooling schedule parameter which is suitable to the property of problem to solve is specified and optimal placement is proven by presented direct combinational method. Search spaces are limited within reasonable feasible solution region to reduce a unnecessary one in the SA implementation based on global search. The proposed method presents to save CPU time and estimate state vectors based on optimal PMU set.

  • PDF

Optimal Placement of Phasor Measurement Unit for Observation Reliability Enhancement

  • TRAN, Van-Khoi;ZHANG, He-sheng;NGUYEN, Van-Nghia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.996-1006
    • /
    • 2017
  • Phasor Measurement Unit (PMU) placement is a crucial problem for State Estimation (SE) of the power system, which can ensure that the power network is fully observed. Further, the observation reliability problem of the system has been concerned in the operation conditions. In this paper, based on modified weighted adjacent matrix ($A_w$), an optimal placement method is proposed to solve simultaneously two problems involving the optimal PMU placement problem and the observation reliability enhancement problem of the system. The purpose of the proposed method is to achieve both the minimum total cost and the maximum observation reliability, with a focus on increasing the security of observability, strengthening the observation reliability of buses as well as enhancing the effectiveness of redundancy. Simulations on IEEE 14, 24, 30 and 57 bus test systems are presented to justify the methodology. The results of this study show that the proposed method is not only ensuring the power network having the observability effectively but also enhancing significantly the observation reliability. Therefore, it can be a useful tool for SE of the power system.

Power System Enhanced Monitoring through Strategic PMU Placement Considering Degree of Criticality of Buses

  • Singh, Ajeet Kumar;Fozdar, Manoj
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1769-1777
    • /
    • 2018
  • This paper proposes a method for optimal placement of Phasor Measurement Units (PMUs) considering system configuration and its attributes during the planning phase of PMU deployment. Each bus of the system is assessed on four diverse attributes; namely, redundancy of measurements, rotor angle and frequency monitoring of generator buses, reactive power deficiency, and maximum loading limit under transmission line outage contingency, and a consolidated 'degree of criticality' is determined using Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The major contribution of the proposed work is the development of modified objective function which incorporates values of the degree of criticality of buses. The problem is formulated as maximization of the aggregate degree of criticality of the system. The resultant PMU configuration extends complete observability of the system and majority of the PMUs are located on critical buses. As budgetary restrictions on utilities may not allow installation PMUs even at optimal locations in a single phase, multi-horizon deployment of PMUs is also addressed. The proposed approach is tested on IEEE 14-bus, IEEE 30-bus, New England (NE) 39-bus, IEEE 57-bus and IEEE 118-bus systems and compared with some existing methods.

A Substation-Oriented Approach to Optimal Phasor Measurement Units Placement

  • Bao, Wei;Guo, Rui-Peng;Han, Zhen-Xiang;Chen, Li-Yue;Lu, Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.18-29
    • /
    • 2015
  • State Estimation (SE) is the basis of a variety of advanced applications used in most modern power systems. An SE problem formed with enough phasor measurement units (PMUs) data is simply a linear weighted least squares problem requiring no iterations. Thus, designing a minimum-cost placement of PMUs that guarantees observability of a power system becomes a worthy challenge. This paper proposes an equivalent integer linear programming method for substation-oriented optimal PMU placement (SOOPP). The proposed method uses an exhaustive search to determine a globally optimal solution representing the best PMU placement for that particular power system. To obtain a more comprehensive model, contingencies and the limitation of the number of PMU measurement channels are considered and embodied in the model as changes to the original constraints and as additional constraints. The proposed method is examined for applicability using the IEEE 14-bus, 118-bus and 300-bus test systems. The comparison between SOOPP results and results obtained by other methods reveals the excellence of SOOPP. Furthermore, practical large-scale power systems are also successfully analyzed using SOOPP.

Complete and Incomplete Observability Analysis by Optimal PMU Placement Techniques of a Network

  • Krishna, K. Bala;Rosalina, K. Mercy;Ramaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1814-1820
    • /
    • 2018
  • State estimation of power systems has become vital in recent days of power operation and control. SCADA and EMS are intended for the state estimation and to communicate and monitor the systems which are operated at specified time. Although various methods are used we can achieve the better results by using PMU technique. On placing the PMU, operating time is reduced and making the performance reliable. In this paper, PMU placement is done in two ways. Those are 'optimal technique with pruning operation' and 'depth of unobservability' considering incomplete and complete observability of a network. By Depth of Unobservability Number of PMUs are reduced to attain Observability of the network. Proposed methods are tested on IEEE 14, 30, 57, SR-system and Sub systems (1, 2) with bus size of 270 and 444 buses. Along with achieving complete observability analysis, single PMU loss condition is also achieved.

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF