• Title/Summary/Keyword: Optimal Life Time

Search Result 580, Processing Time 0.03 seconds

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF

Optimal unidirectional grid tied hybrid power system for peak demand management

  • Vineetha, C.P.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.47-68
    • /
    • 2016
  • A well designed hybrid power system (HPS) can deliver electrical energy in a cost effective way. In this paper, model for HPS consisting of photo voltaic (PV) module and wind mill as renewable energy sources (RES) and solar lead acid battery as storage device connected to unidirectional grid is developed for peak demand reduction. Life time energy cost of the system is evaluated. One year hourly site condition and load pattern are taken into account for analysing the HPS. The optimal HPS is determined for least life time energy cost subject to the constraints like state of charge of the battery bank, dump load, renewable energy (RE) generation etc. Optimal solutions are also found out individually for PV module and wind mill. These three systems are compared to find out the most feasible combination. The results show that the HPS can deliver energy in an acceptable cost with reduced peak consumption from the grid. The proposed optimization algorithm is suitable for determining optimal HPS for desired location and load with least energy cost.

The Software Reliability Growth Models for Software Life-Cycle Based on NHPP

  • Nam, Kyung-H.;Kim, Do-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.573-584
    • /
    • 2010
  • This paper considers the differences in the software execution environments in the testing phase and the operational phase to determine the optimal release time and warranty period of software systems. We formulate equations for the total expected software cost until the end of the software life cycle based on the NHPP. In addition, we derive the optimal release time that minimizes the total expected software cost for an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the optimal testing and maintenance design related to variation of the cost model parameters based on the fault data observed in the actual testing process, and discuss the quantitative properties of the proposed model.

Optimal Plan for Fully Accelerated Life Tests with Three-Step Stress Under Type I Censoring

  • Moon, Kyoung-Ae;Shin, Im-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.2
    • /
    • pp.295-299
    • /
    • 1996
  • In this paper, optimal change times are determined for fully three-step stress accelerated life tests, which minimize the asymptotic variance for maximum likelihood estimator of logarithm of the failure rate at the usual condition and exponential distribution is given for life time data.

  • PDF

A Study on Optimal Release Time for Software Systems based on Mixture Weibull NHPP Model (혼합 와이블 NHPP 모형에 근거한 소프트웨어 최적방출시기에 관한 연구)

  • Lee, Sang Sik;Kim, Hee Cheul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • Decision problem called an optimal release policies, after testing a software system in development phase and transfer it to the user, is studied. The applied model of release time exploited infinite non-homogeneous Poisson process. This infinite non-homogeneous Poisson process is a model which reflects the possibility of introducing new faults when correcting or modifying the software. The failure life-cycle distribution used mixture which has various intensity, if the system is complicated. Thus, software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement becomes an optimal release policies. In a numerical example, after trend test applied and estimated the parameters using maximum likelihood estimation of inter-failure time data, estimated software optimal release time.

Optimal Design of Power Loss for 3 Phase Voltage Source Inverter by using Thermal Management (써멀 메니지먼트(Thermal Management)에 의한 3상 전압형 인버터의 전력손실 최적화 설계)

  • Cho, S.E.;Park, S.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1757-1762
    • /
    • 2007
  • Recently, the demand for the low cost power conversion equipment is rapidly increased. To develop this three phase voltage source inverter, optimum power conversion equipment to system is designed. The optimum operation method to minimize the power loss also satisfy the life time of the power electronics that is request in the present industry. In this paper, the efficient operating method to change of the acceleration, jerk, and switching frequency in the interval of acceleration is selected to optimize the power loss and life time of the power electronics by using the elevator model. So, we proposed the method that 50[A] rating power electronics is adopted in 9[kW] load.

OPTIMAL CONSUMPTION/INVESTMENT AND LIFE INSURANCE WITH REGIME-SWITCHING FINANCIAL MARKET PARAMETERS

  • LEE, SANG IL;SHIM, GYOOCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.4
    • /
    • pp.429-441
    • /
    • 2015
  • We study optimal consumption/investment and life insurance purchase rules for a wage earner with mortality risk under regime-switching financial market conditions, in a continuous time-horizon. We apply the Markov chain approximation method and suggest an efficient algorithm using parallel computing to solve the simultaneous Hamilton-Jaccobi-Bellman equations arising from the optimization problem. We provide numerical results under the utility functions of the constant relative risk aversion type, with which we illustrate the effects of regime switching on the optimal policies by comparing them with those in the absence of regime switching.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Optimal Cutting Condition of Tool Life in the High Speed Machining by Taguchi Design of Experiments (다구찌 실험 계획법을 이용한 고속가공에서 공구수명 조건의 최적화)

  • Lim, Pyo;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.59-64
    • /
    • 2006
  • High Speed Machining(HSM) reduces machining time and improves surface accuracy because of the high cutting speed and feedrate. Development of HSM makes it allowable to machine difficult-to-cut material and use small-size-endmill. It is however limited to cutting condition and tool material. In the machining operation, it is important to check main parameter of tool life and select optimal cutting condition because tool breakage can interrupt progression of operation. In this study, cutting parameters are determined to 3 factors and 3 levels which are a spindle speed, a feedrate and a width of cut. Experiment is designed to orthogonal array table for L9 with 3 outer array using Taguchi method. Also, it is proposed to inspect significance of the optimal factors and levels by ANOVA using average of SN ratio for tool life. Finally, estimated value of SN ratio in the optimal cutting condition is compared with measured one in the floor shop and reduction of loss is predicted.

  • PDF

Establishment of Optimal Conditions for the Hypoosmotic Swelling Test to Evaluate the Integrity of Spermatozoal Plasma Membrane in Dog

  • Jang Hyun-Yong;Jung Yoo-Sung;Kim Jong-Taek;Park Chun-Keun;Cheong Hee-Tae;Kim Choung-Ik;Yang Hoo-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • Hypoosmotic swelling test (HOST) is used for evaluating the plasma membrane function and fertilizing ability in mammal spermatozoa. However, HOS solutions and experimental conditions have not been determined clearly for assessing canine spermatozoa. This study was conducted to examine the HOS solutions and assay conditions, including incubation time (30 to 120 min), storage temperature (4, 17 and $20^{\circ}C$), semen status (fresh and frozen). Maximum spermatozoal plasma membrane swelling was obtained in an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min. The storage temperature and semen status affected the percentage of HOS positive spermatozoa. The HOS test adapted to canine spermatozoa in this study was simple and highly consistent assay with good repeatability. The optimal condition of HOST in canine spermatozoa is an 150 mOsm Na-citrate/Fructose solutions with an incubation time for 45 min regardless of semen storage temperature and semen status.