
The Korean Journal of Applied Statistics (2010)
23(3), 573–584

The Software Reliability Growth Models for

Software Life-Cycle Based on NHPP

Kyung H. Nam1 · Do Hoon Kim2

1Department of Applied Information Statistics, Kyonggi University
2Department of Applied Information Statistics, Kyonggi University

(Received July 2009; accepted May 2010)

Abstract

This paper considers the differences in the software execution environments in the testing phase and the

operational phase to determine the optimal release time and warranty period of software systems. We for-

mulate equations for the total expected software cost until the end of the software life cycle based on the

NHPP. In addition, we derive the optimal release time that minimizes the total expected software cost for

an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the optimal testing

and maintenance design related to variation of the cost model parameters based on the fault data observed

in the actual testing process, and discuss the quantitative properties of the proposed model.

Keywords: Software reliability growth model, nonhomogeneous Poisson process, software release time,

warranty period, software maintenance activity.

1. Introduction

Every software project manager is expected to release fault-free computer software to his/her cus-

tomers. Due to the complicity of current software, it has been increasingly difficult for development

managers to produce highly reliable and effective software systems. In the context of the software

development, penalty costs for software failures are even more significant. As a result, the deter-

mination of the software release time is an important factor in the success or failure of software.

Okumoto and Goel (1980) assumed that the number of software faults detected in the software

testing phase conforms to an exponential software reliability model (Goel and Okumoto, 1979)

based on the NHPP and derived the optimal release time minimizing the total expected cost. Koch

and Kubat (1983) assumed the Jelinski and Moranda (1972) model for the software fault detection

process and discussed a similar problem.

It is not easy to prevent the occurrence of failures caused by software faults after release since

detecting and removing all of the faults latent in the software in the actual testing process are ex-

tremely difficult. In many cases, the development manager must investigate the causes of software

This work was supported by Kyonggi University Research Grant 2007.
1Corresponding author: Professor, Department of Applied Information Statistics, Kyonggi University, Suwon

443-760, Korea. E-mail: knam@kyonggi.ac.kr



574 Kyung H. Nam, Do Hoon Kim

failures that occurred after the software release based on the maintenance and warranty contract

with the user to detect and remove the faults. To perform maintenance in the operational phase (af-

ter the release), the software development manager is requested to reduce the management costs in

the operational phase and effectively utilize the human resources in contrast that require continued

support by the development project team. Although the length of period for continued maintenance

by the development project team has the same importance as the release time, but they have been

considered in the little literature.

Yamada (1994) and Kimura et al. (1999) considered the problem of determining the optimal release

time while assuming the software warranty period to be a random variable. Pham and Zhang

(1999) proposed a software cost model that simultaneously considered the warranty and the risk

after release. However, the operational maintenance of the software is provided as a service after

release by the development manager and must be designed by the maintenance contract itself and

the product delivery date. Dohi et al. (2000) and Rinsaka and Sandoh (1999) determine the optimal

warranty period that minimizes the total expected software cost based on the assumption that the

debugging process in the testing process is described by an NHPP. However, most of the research

does not fully consider the differences in the debugging environments in the testing phase and the

operational phase, and present their discussions based on a simple cost structure.

This paper proposes a model for the differences in the software execution environments in the

testing phase and the operational phase. We consider that the actual maintenance activities are

ineffective during the warranty period. We formulate the mathematical equations for the total

expected software cost until the end of the software life cycle based on the NHPP. In addition, we

derive the optimal release time and warranty period that minimizes the total expected software

cost for an imperfect debugging software reliability model. Finally, we analyze the sensitivity of the

optimal testing and maintenance design related to the variation of the cost model parameters based

on the fault data observed in the actual testing process, and discuss the quantitative properties of

the proposed model.

2. Model Descriptions

2.1. Assumptions

We consider two periodic software maintenance policies in association with an imperfect debugging

software reliability growth model. We construct the several costs required in the software develop-

ment process for failure-occurrence time data to formulate the total expected software cost. The

failure-occurrence time is the time-interval between software failure-occurrences. Throughout this

paper, we postulate the following assumptions.

Assumption 2.1. The software system starts to test at time t = 0.

Assumption 2.2. Software development manager conducts the maintenance activities(e.g. patch,

update) during the warranty period tw after the software release.

Assumption 2.3. The periodic software maintenance is done at periodic time ktw/N , (k = 1, 2, . . . , N,

tw ≥ 0), and is stopped the maintenance activities at the N th periodic software maintenance.

Assumption 2.4. The life cycle tL > 0 of a software product is known.

Assumption 2.5. A new fault may be introduced into the software system due to an imperfect de-

bugging.



The Software Reliability Growth Models for Software Life-Cycle Based on NHPP 575

Let {N(t), t ≥ 0} be a counting process representing the cumulative number of software faults

detected or removed up to time t. The detection time of each software fault can be formulated as

an NHPP as follows:

Pr{N(t) = n} =
{m(t)}n

n!
exp{−m(t)}, (n = 0, 1, 2, . . .), (2.1)

where m(t) is the mean value function of the NHPP, that is, the expected cumulative number of

faults detected up to time t.

Pham (1993) introduced an NHPP SRGM that is subject to an imperfect debugging. He assumed

that the detected faults are removed and then there is a possibility to introduce new faults with

constant rate β. Let a(t) be the number of faults to be eventually detected, where a(t) is the

time-dependent fault content function. The mean value function m(t) can be given as the solution

of the following system of differential equations:

∂m(t)

∂t
= b[a(t)−m(t)],

∂a(t)

∂t
= β

∂m(t)

∂t
, (2.2)

a(0) = a, m(0) = 0,

where a is the number of faults to be eventually detected. Solving the Equation (2.2), we obtain

the mean value function m(t) and instantaneous fault detection rate λ(t) as follows:

m(t) =
a

1− β

[
1− e−(1−β)bt

]
, (2.3)

λ(t) = abe−(1−β)bt.

To determine the optimal release time and warranty period of software systems, we propose two

periodic software maintenance policies in terms of the behavior of instantaneous fault detection rate

with an imperfect debugging SRGM.

Case 1. Let us assume that after the software release, the software reliability growth occurs(assuming

that we correct only major faults that will improve the reliability of the software). That

is, the instantaneous fault detection rate after the release time assumes the decreasing

function.

Case 2. Let us assume that during the warranty period, the software reliability growth does not oc-

cur(assuming that we correct only minor faults). That is, the instantaneous fault detection

rate after the release follows that of the release time point, is continued as constant.

In Figure 2.1, t0 denotes the software release time, tw denotes the software warranty period, tL
denotes the software life cycle and N denotes the number of maintenance activities during the

warranty period and 0 < t1(= t0 + tw/N) < t2(= t0 + 2tw/N) < · · · < tN (= t0 + tw).

The instantaneous fault detection rates of the proposed periodic maintenance policy are as follows.

1. Policy 1 based on Case(1)

λpm(t) = λ(t), 0 < t ≤ t0 + tL. (2.4)

2. Policy 2 based on Case(2)

λpm(t) =

{
λ(t), 0 < t ≤ t0,
λ(t0), t0 < t ≤ t0 + tL.

(2.5)



576 Kyung H. Nam, Do Hoon Kim

Figure 2.1. Software reliability growth during the warranty period of ineffective maintenance policies

2.2. Total expected software cost

To formulate the total expected software cost based on data related to the number of faults detected

in the software development process, the cost parameters are defined as follows.

c0(> 0): cost to remove each fault in the testing phase.

cw(> 0): cost to remove each fault during the warranty period.

cL(> 0): cost to remove each fault after the warranty period.

cp(> 0): unit maintenance cost.

ct(> 0): testing cost per unit time.

Based on the Pham (1993)’s NHPP model described in Section 2.1, we formulate the total expected

software cost in the software development project.

Several expected costs that are required during the software development project can be determined

as follows:

1) The expected cumulative number of software faults removed in the testing phase (0, t0) is given

by

E [N(t0)] = m(t0), (2.6)

where N(t0) is the number of faults detected up to time t0. Hence, the expected cost to remove

all faults detected by time t0, EC0(t0, tw), can be expressed as

EC0(t0, tw) = c0 · E [N(t0)] = c0m(t0). (2.7)

2) The expected cumulative number of software faults removed during warranty period [t0, t0 + tw)

is given by

E [N(t0 + tw)−N(t0)] = [m(t0 + tw)−m(t0)] . (2.8)



The Software Reliability Growth Models for Software Life-Cycle Based on NHPP 577

Hence, the expected cost to remove all faults detected by time [t0, t0 + tw), ECw(t0, tw), can be

expressed as

ECw(t0, tw) = cw · E [N(t0 + tw)−N(t0)] = cw [m(t0 + tw)−m(t0)] . (2.9)

3) The expected cumulative number of software faults removed after warranty period [t0 + tw, t0 +

tL) is given by

E [N(t0 + tL)−N(t0 + tw)] = [m(t0 + tL)−m(t0 + tw)] . (2.10)

Hence, the expected cost to remove all faults detected by time [t0 + tw, t0 + tL), ECL(t0, tw),

can be expressed as

ECL(t0, tw) = cL · E [N(t0 + tL)−N(t0 + tw)] = cL [m(t0 + tL)−m(t0 + tw)] . (2.11)

4) Cost to do patch, ECp(t0, tw) is proportional to the number of maintenance activities

ECp(t0, tw) = cp ·N. (2.12)

5) Testing cost, ECt(t0, tw) is a linear function of time t0 and tw

ECt(t0, tw) = ct(t0 + tw). (2.13)

Therefore, the total expected software cost, EC(t0, tw) can be expressed as

EC(t0, tw) = c0m(t0) + cw [m(t0 + tw)−m(t0)]

+ cL [m(t0 + tL)−m(t0 + tw)] + cpN + ct(t0 + tw). (2.14)

By the total expected software cost of proposed maintenance policies in Case 1 and 2 replacing λ(t)

with abe−(1−β)bt in Equation (2.3), we can be calculated as follows.

1. Policy 1 based on Case(1)

EC1(t0, tw) = c0

∫ t0

0

abe−(1−β)btdt+ cw

∫ t0+tw

t0

abe−(1−β)btdt+ cL

∫ t0+tL

t0+tw

abe−(1−β)btdt

+ cpN + ct(t0 + tw). (2.15)

2. Policy 2 based on Case(2)

EC2(t0, tw) = c0

∫ t0

0

abe−(1−β)btdt+ cw

∫ t0+tw

t0

abe−(1−β)bt0dt+ cL

∫ t0+tL

t0+tw

abe−(1−β)bt0dt

+ cpN + ct(t0 + tw). (2.16)

In the next chapter, we discuss the optimal release time t∗0 and the optimal warranty period t∗w
minimizing the total expected software cost.

3. Optimal Software Release Time and Warranty Period

We now derive the optimal release time and the optimal warranty period for proposed policies that

minimize the total expected software cost, EC1(t0, tw), EC2(t0, tw), respectively.



578 Kyung H. Nam, Do Hoon Kim

3.1. Policy 1 based on Case(1)

To show the existence and uniqueness of the optimal release time t∗0 and the optimal warranty

period t∗w, which minimize EC1(t0, tw), we rewrite the total expected software cost of Equation

(2.15) as follows.

EC1(t0, tw) =
ac0

1− β

[
1− e−(1−β)bt0

]
+

acw
1− β

[
e−(1−β)bt0

(
1− e−(1−β)btw

)]
+

acL
1− β

[
e−(1−β)bt0

(
e−(1−β)btw − e−(1−β)btL

)]
+ cpN + ct(t0 + tw). (3.1)

The following assumptions are set:

(A-I) cL > cw > c0

(A-II) cw
(

1− e−(1−β)btL
)
> c0

(A-III) cw
(

1− e−(1−β)btw
)

+ cL
(
e−(1−β)btw − e−(1−β)btL

)
> c0

and let

Q1(tw) = ab
[
c0 − cw

(
1− e−(1−β)btw

)
− cL

(
e−(1−β)btw − e−(1−β)btL

)]
+ c0. (3.2)

Theorem 3.1. Given c0, cw, cL, cp, ct, N, tw, tL, the optimal release time t∗0, which minimizes the

total expected software cost, EC1(t0, tw) can be determined as follows based on A-I to A-III.

Case 1. When Q1(tw) < 0, a finite and unique t∗0(> 0) that minimizes the total expected software

cost EC1(t0, tw) exists:

EC1(t∗0, tw) =
ac0

1− β

[
1− e−(1−β)bt∗0

]
+

acw
1− β

[
e−(1−β)bt∗0

(
1− e−(1−β)btw

)]
+

acL
1− β

[
e−(1−β)bt∗0

(
e−(1−β)btw − e−(1−β)btL

)]
+ cpN + ct (t∗0 + tw) . (3.3)

Case 2. When Q1(tw) > 0, t∗0 = 0 and

EC1(t∗0, tw) =
acw

1− β

[
1− e−(1−β)btw

]
+

acL
1− β

[
e−(1−β)btw − e−(1−β)btL

]
+cpN+cttw. (3.4)

The software debugging becomes optimal by only an acceptance test by the user in the operational

phase.

Proof.

∂EC1(t0, tw)

∂t0
= abc0e

−(1−β)bt0 − abcwe−(1−β)bt0
(

1− e−(1−β)btw
)

− abcLe−(1−β)bt0
(
e−(1−β)btw − e−(1−β)btL

)
+ ct. (3.5)

Let δ1(t0, tw) denote the right-hand side of Equation (3.5), then

δ1(0, tw) = ab
[
c0 − cw

(
1− e−(1−β)btw

)
− cL

(
e−(1−β)btw − e−(1−β)btL

)]
+ ct (3.6)

and

lim
t0→+∞

δ1(t0, tw) = ct. (3.7)



The Software Reliability Growth Models for Software Life-Cycle Based on NHPP 579

Differentiating Equation (3.5) with respect to t0, we obtain

∂2EC1(t0, tw)

∂2t0
=ab2(1−β)e−(1−β)bt0

[
−c0+cw

(
1−e−(1−β)btw

)
+cL

(
e−(1−β)btw−e−(1−β)btL

)]
. (3.8)

Letting γ1(t0, tw) denote the right-hand side of Equation (3.8),

γ1(0, tw) = ab2(1− β)
[
−c0 + cw

(
1− e−(1−β)btw

)
+ cL

(
e−(1−β)btw − e−(1−β)btL

)]
. (3.9)

Letting A1(tw) denote the right-hand side of Equation (3.9), A1(0) > 0 is equivalent to cL(1 −
e−(1−β)btL) > c0, A1(tL) > 0 is equivalent to cw(1− e−(1−β)btL) > c0. Therefore, from assumption

A-I, A1(0) > A1(tL) holds. Furthermore, A′1(tw) becomes

A′1(tw) = −(cL − cw)ab3(1− β)2e−(1−β)btw < 0, (3.10)

γ1(0, tw) > 0. Next,

lim
t0→+∞

γ1(t0, tw) = 0 (3.11)

∂γ1(t0, tw)/∂t0 < 0 is equivalent to

cw
(

1− e−(1−β)btw
)

+ cL
(
e−(1−β)btw − e(1−β)btL

)
> c0. (3.12)

�

Theorem 3.2. Given c0, cw, cL, cp, ct, N, t0, tL, the optimal warranty period t∗w, which minimizes the

total expected software cost EC1(t0, tw) based on A-I is determined by the following.

Case 1. When ct ≥ abe−(1−β)bt0(cL − cw), t∗w = 0 minimizes EC1(t0, tw).

EC1(t0, t
∗
w)=

ac0
1−β

[
1− e−(1−β)bt0

]
+
acL
1−β

[
e−(1−β)bt0

(
1−e−(1−β)btL

)]
+ cpN + ctt0. (3.13)

Case 2. When ct < abe−(1−β)bt0(cL − cw) and ct > abe−(1−β)b(t0+tL)(cL − cw), a finite and unique

t∗w(0 < tw < tL) that minimizes the total expected software cost EC1(t0, tw) exists.

EC1(t0, t
∗
w) =

ac0
1− β

[
1− e−(1−β)bt0

]
+

acw
1− β

[
e−(1−β)bt0

(
1− e−(1−β)bt∗w

)]
+

acL
1− β

[
e−(1−β)bt0

(
e−(1−β)bt∗w − e−(1−β)btL

)]
+ cpN + ct(t0 + t∗w). (3.14)

Case 3. When ct ≤ abe−(1−β)b(t0+tL)(cL − cw), t∗w = tL minimizes EC1(t0, tw).

EC1(t0, t
∗
w) =

ac0
1− β

[
1− e−(1−β)bt0

]
+

acw
1− β

[
e−(1−β)bt0

(
1− e−(1−β)btL

)]
+ cpN + ct(t0 + tL). (3.15)

Proof.

∂EC1(t0, tw)

∂tw
= abe−(1−β)b(t0+tw)(cw − cL) + ct. (3.16)

Let ξ1(t0, tw) denote the right-hand side of Equation (3.16). Then

ξ1(t0, 0) = abe−(1−β)bt0(cw − cL) + ct (3.17)



580 Kyung H. Nam, Do Hoon Kim

and

lim
tw→+∞

ξ1(t0, tw) = ct. (3.18)

Differentiating Equation (3.17) with respect to tw, we obtain

∂ξ1(t0, tw)

∂tw
= ab2(1− β)e−(1−β)b(t0+tw)(cL − cw). (3.19)

Let η1(t0, tw) denote the right-hand side of Equation (3.16). According to the assumption A-I,

η1(t0, tw) > 0. �

Now, we introduce the algorithm presented by Rinsaka and Dohi (2006) for simultaneously deter-

mining the optimal release time and the optimal warranty period which minimizes EC1(t0, tw) as

discussed in maintenance policy of hardware product (Mi, 1994; Cha, 2000, 2001).

Algorithm

Step 1. If (t0, tw) which satisfied (3.20) exists for t0 ≥ 0 and 0 ≤ tw ≤ tL, go to Step 2. If not,

execute Step 3.

∂EC1(t0, tw)

∂t0
=
∂EC1(t0, tw)

∂tw
= 0. (3.20)

Step 2. The Hessian is defined as

H(t0, tw) =
∂2EC1(t0, tw)

∂t20

∂2EC1(t0, tw)

∂t2w
−
(
∂2EC1(t0, tw)

∂t0∂tw

)2

. (3.21)

If H(t0, tw) > 0 and ∂2EC1(t0, tw)/∂t20 > 0, the solution found in Step 1 becomes the joint

optimal policy (t∗∗0 , t
∗∗
w ), and the algorithm ends. If not, execute Step 3.

Step 3. Determine t∗w(0 ≤ t∗w ≤ tL) that satisfies ∂EC1(0, tw)/∂tw = 0, and set

EC
(1)
1 (t∗0, t

∗
w) = EC1(0, t∗w).

Step 4. Determine t∗0(0 ≤ t∗0 <∞) that satisfies ∂EC1(t0, 0)/∂t0 = 0, and set

EC
(2)
1 (t∗0, t

∗
w) = EC1(t∗0, 0).

Step 5. Determine t∗0(0 ≤ t∗0 <∞) that satisfies ∂EC1(t0, tL)/∂t0 = 0, and set

EC
(3)
1 (t∗0, t

∗
w) = EC1(t∗0, t

∗
L).

Step 6. The minimum total expected software cost is obtained from EC1(t∗∗0 , t
∗∗
w ) = mini=1,2,3 EC

(i)
1

(t∗0, t
∗
w) and the corresponding (t∗∗0 , t

∗∗
w ) becomes the joint optimal policy.

3.2. Policy 2 based on Case(2)

By utilizing the similar technique as in Policy 1, we find the optimal release time t∗0 and the optimal

warranty period t∗w, which minimize EC2(t0, tw). Rewriting the total expected software cost of



The Software Reliability Growth Models for Software Life-Cycle Based on NHPP 581

Equation (2.16), we have

EC2(t0, tw) =
ac0

1−β

[
1−e−(1−β)bt0

]
+abe−(1−β)bt0 [cwtw+cLtL−cLtw]+cpN+ct(t0+tw). (3.22)

The following assumptions are set:

(B-I) cL > cw > c0

(B-II) b(1− β)cwtL > c0

(B-III) b(1− β) [cwtw + cLtL − cLtw] > c0

and let

Q2(tw) = ab [c0 − b(1− β) (cwtw + cLtL − cLtw)] + ct. (3.23)

Theorem 3.3. Given c0, cw, cL, cp, ct, N, tw, tL, the optimal release time t∗0, which minimizes the

total expected software cost EC2(t0, tw) can be determined as follows based on B-I to B-III.

Case 1. When Q2(tw) < 0, a finite and unique t∗0(> 0) that minimizes the total expected software

cost EC2(t0, tw) exists:

EC2(t∗0, tw) =
ac0

1− β

[
1− e−(1−β)bt∗0

]
+ abe−(1−β)bt∗0 [cwtw + cLtL − cLtw]

+ cpN + ct(t
∗
0 + tw). (3.24)

Case 2. When Q2(tw) ≥ 0, t∗0 = 0 and

EC2(t∗0, tw) = ab[cwtw + cLtL − cLtw] + cpN + cttw. (3.25)

The software debugging becomes optimal by only an acceptance test by the user in the operational

phase.

Proof. Omitted. �

Theorem 3.4. Given c0, cw, cL, cp, ct, N, t0, tL, the optimal warranty period t∗w, which minimizes the

total expected software cost EC2(t0, tw) is determined by the following.

Case 1. When ct ≥ abe−(1−β)bt0(cL − cw), t∗w = 0 minimizes EC2(t0, tw).

EC2(t0, t
∗
w) =

ac0
1− β

[
1− e−(1−β)bt0

]
+ abe−(1−β)bt0cLtL + cpN + ctt0. (3.26)

Case 2. When ct ≤ abe−(1−β)bt0(cL − cw), t∗w = tL minimizes EC2(t0, tw).

EC2(t0, t
∗
w) =

ac0
1− β

[
1− e−(1−β)bt0

]
+ abe−(1−β)bt0cwtL + cpN + ct(t0 + tL). (3.27)

Proof. Omitted. �

The algorithm presented by Rinsaka and Dohi (2006) for simultaneously determining the optimal

release time and the optimal warranty period which minimize EC2(t0, tw) is similar to previous

algorithm.



582 Kyung H. Nam, Do Hoon Kim

Table 4.1. Software failure occurrence time data from System T1

software failure times (CPUs)

3 1846 5324 10258 15806 26770 42296 56485

33 1872 5389 10491 16185 27753 42296 56560

146 1986 5565 10625 16229 28460 45406 57042

227 2311 5623 10982 16358 28493 46653 62551

342 2366 6080 11175 17168 29361 47596 62651

351 2608 6380 11411 17458 30085 48296 62661

353 2676 6477 11442 17758 32408 49171 63732

444 3098 6740 11811 18287 35338 49416 64106

556 3278 7192 12559 18568 36799 50145 64893

571 3288 7447 12559 18728 37642 52042 71043

709 4434 7644 12791 19556 37654 52489 74364

759 5036 7837 13121 20567 37915 52875 75409

836 5049 7843 13486 21012 39715 53321 76057

860 5085 7922 14708 21308 40580 53443 81542

968 5089 8738 15251 23063 42015 54433 82702

1056 5089 10089 15261 24127 42045 55381 84566

1726 5097 10237 15277 25910 42188 56463 88682

Table 4.2. Optimal release time and its corresponding cost for Policy 1

ct
tw = 200 tw = 210 tw = 220 tw = 230 tw = 250

t∗0 EC1(t
∗
0 , tw) t∗0 EC1(t

∗
0 , tw) t∗0 EC1(t

∗
0 , tw) t∗0 EC1(t

∗
0 , tw) t∗0 EC1(t

∗
0 , tw)

0.20 982.29 1815.19 923.48 1803.87 863.58 1790.37 763.39 1772.52 628.26 1745.74

0.21 752.12 1823.45 709.19 1814.79 624.31 1805.21 531.31 1785.57 389.51 1755.21

0.22 562.82 1833.28 481.53 1822.82 423.10 1813.28 333.25 1794.82 153.12 1758.74

0.23 354.14 1842.92 298.19 1830.67 216.54 1820.12 120.51 1812.36 0 1760.63

0.24 152.21 1849.11 98.28 1836.52 23.56 1826.65 0 1809.54 0 1762.86

0.25 0 1953.65 0 1840.88 0 1829.43 0 1811.17 0 1764.64

4. Numerical Example

In this chapter, we apply proposed cost models to a set of real testing data of System T1 (Musa,

1979). This system T1 data is summarized as a software failure occurrence time data per fault.

Using the maximum likelihood estimate method, the estimates of parameter of Pham (1993) model

can be obtained:

â = 132.6, b̂ = 3.52× 10−5, β̂ = 0.1337.

The estimated mean value function becomes:

m̂(t) = 156.0648
[
1− e−0.00003049t] .

We assume the following parameters to obtain optimal release time and warranty period in the

proposed cost model as

c0 = 1.0, cw = 3.0, cL = 20.0, cp = 2.0, tL = 1000 and N = 60.

The optimal release times are then calculated for different values of testing cost per unit time ct
and warranty period tw. The results are tabulated and shown in Tables 4.2 and 4.3, respectively.

From Tables 4.2 and 4.3, it can be seen that when the testing cost per unit time ct for fixed the

warranty period tw increases, the optimal release time t∗0 is shorten and the total expected software



The Software Reliability Growth Models for Software Life-Cycle Based on NHPP 583

Table 4.3. Optimal release time and its corresponding cost for Policy 2

ct
tw = 200 tw = 210 tw = 220 tw = 230 tw = 250

t∗0 EC2(t
∗
0 , tw) t∗0 EC2(t

∗
0 , tw) t∗0 EC2(t

∗
0 , tw) t∗0 EC2(t

∗
0 , tw) t∗0 EC2(t

∗
0 , tw)

0.20 1034.35 1798.78 959.09 1785.72 882.76 1772.45 805.28 1758.96 646.86 1731.28

0.21 809.42 1809.99 734.15 1796.28 657.80 1782.35 580.33 1768.18 421.91 1739.11

0.22 594.94 1819.00 519.67 1804.64 443.32 1790.05 365.86 1775.20 207.43 1744.75

0.23 389.99 1825.92 314.73 1810.91 238.38 1795.65 160.91 1780.13 2.49 1748.29

0.24 193.77 1830.83 118.51 1815.17 42.16 1799.24 0 1783.08 0 1750.92

0.25 5.56 1833.82 0 1817.63 0 1801.49 0 1785.38 0 1753.29

Table 4.4. Optimal warranty period and its corresponding for Policy 1

ct
t0 = 500 t0 = 510 t0 = 520 t0 = 530 t0 = 550

t∗w EC1(t
∗
0 , tw) t∗w EC1(t

∗
0 , tw) t∗w EC1(t

∗
0 , tw) t∗w EC1(t

∗
0 , tw) t∗w EC1(t

∗
0 , tw)

0.20 387.50 3104.15 377.50 3117.76 367.50 3131.34 357.50 3144.89 337.50 3171.90

0.21 357.06 3115.88 347.06 3129.48 337.06 3143.06 327.06 3156.61 307.06 3183.62

0.22 326.83 3127.30 316.83 3140.90 306.83 3154.48 296.83 3168.03 276.83 3195.04

0.23 296.80 3138.41 286.80 3152.02 276.80 3165.60 266.80 3179.15 246.80 3206.16

0.24 266.95 3149.23 256.95 3162.84 246.95 3176.97 236.95 3189.97 216.95 3121.98

0.25 237.31 3165.75 227.31 3173.36 217.31 3186.94 207.31 3200.49 187.31 3227.50

Table 4.5. Optimal warranty period and its corresponding for Policy 2

ct
t0 = 500 t0 = 510 t0 = 520 t0 = 530 t0 = 550

t∗w EC2(t
∗
0 , tw) t∗w EC2(t

∗
0 , tw) t∗w EC2(t

∗
0 , tw) t∗w EC2(t

∗
0 , tw) t∗w EC2(t

∗
0 , tw)

0.20 1000 763.774 1000 766.134 1000 768.493 1000 770.851 1000 775.566

0.21 1000 778.774 1000 783.234 1000 783.693 1000 786.151 1000 791.066

0.22 1000 793.774 1000 796.893 1000 798.893 1000 801.451 1000 806.566

0.23 1000 808.774 1000 811.434 1000 814.093 1000 816.751 1000 822.066

0.24 1000 823.774 1000 826.534 1000 829.293 1000 832.051 1000 837.566

0.25 1000 838.774 1000 841.634 1000 844.493 1000 847.351 1000 853.066

Table 4.6. Optimal release time and warranty period for Policy 1 and 2

ct
Policy 1 Policy 2

t∗∗0 t∗∗w EC1(t
∗∗
0 , t∗∗w ) t∗∗0 t∗∗w EC2(t

∗∗
0 , t∗∗w )

0.20 237.48 882.37 678.89 375.55 864.32 645.67

0.21 108.22 1000 689.10 246.75 962.89 688.39

0.22 0 1000 697.37 113.47 1000 707.35

0.23 0 1000 702.48 0 1000 723.54

0.24 0 1000 706.12 0 1000 737.75

0.25 0 1000 703.31 0 1000 753.56

cost increases. In addition, when the warranty period tw for fixed the testing cost per unit time

ct increases, the optimal release time decreases. Comparing Policy 1 and Policy 2, the optimal

release time of Policy 1 is always earlier than that of Policy 2 and the total expected software

cost of Policy 1 for optimal release time is always later than that of Policy 2; this is because the

reliability increases and the residual faults in the software were effectively detected and removed in

the operational phase during a given warranty period.

Table 4.4 and 4.5 examine the effect of the testing cost per unit time ct and release time t0 on the

optimal warranty period t∗w for the proposed Policy 1 and 2. It can be seen that when the testing

cost per unit time ct for fixed the release time t0 increases, the optimal warranty period t∗w shorten

and the total expected software cost increases. In addition, when the release time t0 for fixed the

testing cost per unit time ct increases, the optimal warranty period decreases. Comparing Policy 1

and Policy 2, the optimal warranty period of Policy 1 is always shorter than that of Policy 2 and

the total expected software cost of Policy 1 for optimal warranty period is always greater than that

of Policy 2; The reason is same in the case determination of the optimal release time.



584 Kyung H. Nam, Do Hoon Kim

Table 4.6 shows the effect of the testing cost per unit time ct on the joint optimal policy of the

release time and the warranty period. From Table 4.6, as ct increases, the optimal release time

t∗∗0 happens earlier. However, the optimal warranty period t∗∗0 cannot be seen. In addition, as the

testing cost per unit time ct increases, EC1(t∗∗0 , t
∗∗
w ), EC2(t∗∗0 , t

∗∗
w ) can be confirmed to also decrease.

5. Conclusions

This paper defined the time support by the project team ends in the operational phase as the

warranty period and modeled the differences in the software execution environments in the testing

phase and the operational phase by considering the software operational profile in the software

reliability model based on NHPP. In addition, we considered the problem of determining the optimal

testing period and the optimal warranty period that minimize the total expected software cost in

terms of periodic software maintenance (e.g. update, service pack, etc). As a future problem, the

same model can be built and analyzed even in other periodic software maintenance (e.g. upgrade,

version up) policies.

References

Cha, J. H. (2000). On a better burn-in procedure, Journal of Applied Probability, 37, 1099–1103.

Cha, J. H. (2001). Burn-in procedures for a generalized model, Journal of Applied Probability, 38, 542–553.

Dohi, T., Okamura, H., Kaio, N. and Osaki, S. (2000). The age-dependent optimal warranty policy and
its application to software maintenance contract, Proceeding 5th International on Probability Safety
Assessment Manage, 4, 2547–2552.

Goel, A. L. and Okumoto, K. (1979). Time-dependent error-detection rate model for software reliability and
other performance measures, IEEE Transactions on Reliability, R-28, 206–211.

Jelinski, Z. and Moranda, P. B. (1972). Software Reliability Research, Statistical Computer Performance
Evaluation, Freiberger, W. Ed., Academic Press, New York.

Kimura, M., Toyota, T. and Yamada, S. (1999). Economic analysis of software release problem with warranty
cost and reliability requirement, Reliability Engineering and System Safety, 66, 49–55.

Koch, H. S. and Kubat, P. (1983). Optimal release time of computer software, IEEE Transaction on Software
Engineering, 9, 323–327.

Mi, J. (1994). Burn-in and maintenance policies, Advances in Applied Probability, 26, 207–221.

Musa, J. D. (1979). Software Reliability Data, Technique Report, Roma Air Development Center, USFA.

Okumoto, K. and Goel, A. L. (1980). Optimum release time for software system and based on reliability and
cost criteria, Journal of System and Software, 1, 315–318.

Pham, H. (1993). Software reliability assessment: Imperfect debugging and multiple failure types in software
development, EG&G-RAMM-10737, Idaho National Engineering Laboratory.

Pham, H. and Zhang, X. (1999). A software cost model with warranty and risk costs, IEEE Transactions
on Computers, 48, 71–75.

Rinsaka, K. and Sandoh, H. (1999). A study on software maintenance service contracts, Transactions of
IEICE, J82-A, 1819–1829.

Rinsaka, K. and Dohi, T. (2006). Optimal testing/maintenance design in a software development project,
Electronics and Communications in Japan, 89, 953–961.

Yamada, S. (1994). Optimal release problems with warranty period based on a software maintenance cost
model, Transactions on IPS Japan, 35, 2197–2202.




