• Title/Summary/Keyword: Optimal Engine

Search Result 605, Processing Time 0.025 seconds

Integrated Engine-CVT Control Considering Powertrain Response Lag in Acceleration

  • Kim, Tal-Chol;Kim, Hyun-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.764-772
    • /
    • 2000
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the inertia torque and the CVT ratio change response lag in acceleration. In order to compensate for drive torque time delay due to CVT response lag, two algorithms are presented: (1) an optimal engine torque compensation algorithm, and (2) an optimal engine speed compensation algorithm. Simulation results show that the optimal engine speed compensation algorithm gives better engine operation around the optimal operation point compared to the optimal torque compensation while showing nearly the same acceleration response. The performance of the proposed engine-CVT integrated control algorithms are compared with those of conventional CVT control, and It is found that optimal engine operation can be achieved by using integrated control during acceleration, and improved fuel economy can be expected while also satisfying the driver's demands.

  • PDF

Engine-CVT Integrated Control Algorithm Considering Power train Loss and CVT Response Lag (동력전달계 동력손실계 CVT 응답지연을 고려한 엔진-CVT 통합제어 알고리즘)

  • 김달철;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.112-121
    • /
    • 2001
  • In this paper, an engine-CVT integrated control algorithm is suggested by considering the powertrain loss, inertia torque and the CVT ratio response lag. The integrated control algorithm consists of (1) the optimal engine power calculation and (2) determining of the optimal throttle valve opening and the optimal CVT ratio. The optimal engine power is obtained by compensating the inertia torque due to the CVT ratio change and the powertrain loss that is calculated iteration procedure. In addition, an algorithm to compensate the effect of the CVT ratio response lag on the drive torque is suggested by the engine speed compensation causing the increased optimal CVT ratio. Simulation results show that the engine-CVT integrated control algorithm developed in this study makes it possible to obtain better engine operation on the optimal operating line, which results in the improved fuel economy while satisfying the driver's demand.

  • PDF

Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions

  • Karimi Hamid Reza
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.714-724
    • /
    • 2006
  • In this note a method of designing optimal vibration control based on Haar functions to control of bounce and pitch vibrations in engine-body vibration structure is presented. Utilizing properties of Haar functions, a computational method to find optimal vibration control for the engine-body system is developed. It is shown that the optimal state trajectories and optimal vibration control are calculated approximately by solving only algebraic equations instead of solving the Riccati differential equation. Simulation results are included to demonstrate the validity and applicability of the technique.

Optimal Mounting System for Active Engine Mount (능동 최적 마운팅 시스템 개발)

  • Kim, Jeong-Hoon;Kim, Jae-San;Kim, Jang-Ho;Lee, Dong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.276-277
    • /
    • 2008
  • Recently active engine mounting system is developed for improvement of vehicle NVH performance which follow the development of high efficient powertrain and lightweight vehicle body. The most important part in the development of active engine mounting system is implementation of optimal engine mounting system to apply active engine mount. In this paper engine mounting systems including active engine mount are considered and their performance is predicted using engine mounting system analysis tool. Then optimal mounting system for active engine mount is proposed.

  • PDF

Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems (엔진 마운트의 동특성 해석 및 최적설계 시스템)

  • 임홍재;성상준;이상범
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

A Study on Optimal Selection System for the Engine Horsepower of fishing Vessels Longer than 24m (24m 이상 어선의 최적 기관마력 설정 모형에 관한 연구)

  • 박제웅;이근무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.77-84
    • /
    • 2003
  • The excessive cost of building ships causes the instability of payability, which manage poorly fishing vessels longer than 24m. As a result, an officer evades embarkation and a vicious circle is repeated. In this study, the optimal engine horsepower system for fishing vessels longer than 24m was invented to develop the most efficient engine horsepower, and also a database program for the most efficient engine horsepower has been developed based on the type of and their size.

Dynamic Analysis and Optimal Design of Engine Mount Systems with Consideration of Foundation Flexibility

  • Lee, Sang-Beom;Yim, Hong-Jae;Lee, Jang-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.51-58
    • /
    • 2001
  • Equations of motion of an engine mount system including foundation flexibility are derived. Forced vibration analysis is carried out for the given engine mount system excited with the unbalanced force and moment. A new optimal design method for the engine mount system is proposed, in which vibration characteristics of the chassis frame structure are considered as design parameters.

  • PDF

A Study on an Optimal Design of Engine Mount System (엔진 마운트계의 최적설계에 관한 연구)

  • 황원걸
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 1998
  • The major effective factors on the ride quality of a vehicle are the vibration and noise of the engine and drive system. Engine contributes about 80% of the vibration and noise in the vehicle, and exciting forces of the engine are transmitted onto the vehicle frame through the engine mount. This paper studies the vibration reduction of a vehicle through the improvement of the engine mount. A computer program for optimal design is developed and the engine mount conditions are optimized to reduce the WRMS of PSD of acceleration at the driver's seat, which are caused by the exciting forces at the idle speed. Design variables are selected as the stiffness, mount angle and the location of the engine mount rubber. It is shown through computer simulation that the PSD of acceleration at the driver's seat can be improved by redesigning the engine mount system.

  • PDF

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Optimal Condition of Specific Impulse for a Liquid Rocket Engine with Film Cooling (막냉각이 적용된 액체로켓엔진의 비추력 최적조건)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • An analysis has been conducted of the optimal condition to maximize the specific impulse for a liquid rocket engine with film cooling. The present engine performance has been compared with the published conceptual design to be verified satisfactorily accurate. The optimal combination of film coolant flow rate and the regenerative cooling capacity has been found for maximum specific impulse. The optimal fuel pump pressure increases and the optimal film coolant flow decreases for a larger thrust engine. Higher turbine inlet temperature increases both the fuel pump pressure and the film coolant flow rate as the optimal condition. The coking temperature has the same qualitative effect as the turbine inlet temperature.

  • PDF