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Optimal Vibration Control of Vehicle Engine-Body System
using Haar Functions

Hamid Reza Karimi

Abstract: In this note' a method of designing optimal vibration control based on Haar functions
to control of bounce and pitch vibrations in engine-body vibration structure is presented.

Utilizing properties of Haar functions, a computational method to find optimal vibration control

for the engine-body system is developed. It is shown that the optimal state trajectories and
optimal vibration control are calculated approximately by solving only algebraic equations
instead of solving the Riccati differential equation. Simulation results are included to
demonstrate the validity and applicability of the technique.
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1. INTRODUCTION

Active control of sound and vibration has emerged
as an important area of scientific and technological
development in recent years. Developments in active
control have allowed successful application of the
concept in numerous industrial areas [1,2]. Recently,
the noise and vibration of cars have become
increasingly important. The predominant sources of
interior noise in cars are engine and wheel vibrations,
which propagate as structure-borne sound through the
car body and finally radiate as airborne sound into the
cabin [2,3-5]. A major comfort aspect is the
transmission of engine-induced vibrations through
powertrain mounts into the chassis (see Fig. 1).
Engine and powertrain mounts are usually designed
according to criteria that incorporate a trade-off
between the isolation of the engine from the chassis
and the restriction of engine movements. The engine
mount is an efficient passive means to isolate the car
chassis structure from the engine vibration. The
passive means for isolation is efficient only in the
high frequency range. However the vibration
disturbance generated by the engine occurs mainly in
the low frequency range [3,6-9]. These vibrations are
result of the fuel explosion in the cylinder and the

rotation of the different parts of the engine (see Fig. 2).

The commercial use of engine and wheel mounts has
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Fig. 1. Vehicle engine-body vibration system.

been impeded so far by technical problems. Compact
and robust combinations of conventional rubber
mounts with electrodynamically driven hydraulics
have been constructed as active hydromounts for a
wide frequency range [10], but the stroke and power
required for cars at low frequencies cannot yet be
fulfilled by active hydromounts of reasonable size [2].

A variety of control techniques, such as PID or
Lead-Lag compensation, LQG/H,, Hw,  -synthesis

and feedforward control have been used in active
vibration systems [5,9,11-20]. The main chearacteristic
of feedforward control is that information about the
disturbance source is available and is usually realized
with the Fx-LMS algorithms. However, the
disturbance source is assumed to be unknown ‘in
feedback control, and then different strategies of
feedback control for vibration attenuation of unknown
disturbance exist ranging from classical methods to
more advanced methods. Recently, the performance
results obtained by feedback and feedforward
controllers using Fx-LMS algorithms for vehicle
engine-body vibration system were compared in [8,9].
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Fig. 2. Chassis excited by the engine vibration [8].

On the other hand, in the field of dynamic systems
and control, orthogonal functions-based techniques of
analysis, identification and control have received
considerable attention in the recent years. This is
evident from the vast amount of literature published
over the last two decades [21,22]. The various systems
of orthogonal functions may be classified into two
categories. The first is the so-called piecewise
constant basis functions to which the orthogonal
systems of Haar functions (HFs) [23-25], block pulse
functions [26] and Walsh functions [27] belong. These
functions are constant over different segments within
their intervals of definition and the functions and
solutions represented using this class as basis is
always staircase-approximated. The main characteri-
stic of the piecewise constant basis functions is that
these problems are reduced to those of solving a
system of algebraic equations for the solution of
problems described by differential equations. Thus,
the solution, identification and optimisation procedure
are either greatly reduced or much simplified
accordingly [25,28-32]. Despite this, orthogonal
polynomials such as Legendre, Laguerre, Chebyshev,
Jacobi, Hermite along with sine-cosine functions were
extensively applied to many areas of systems and
control in the last decade [33-36]. The problems
considered so far for orthogonal functions-based
solutions include response analysis, optimal control,
parameter estimation, model reduction, controller
design, and state estimation. They have been applied
to linear time-invariant and time-varying systems,
nonlinear and distributed parameter systems, which
include scaled systems, stiff systems, delay systems,
singular systems and multivariable systems [22].

In the sequel, we apply the HFs to the finite-time
optimal control problem of the second-order vehicle
engine-body vibration system. Mathematical model of

the engine-body vibration structure is presented such
the actuators and sensors used to investigate the
optimal control are selected to be collocated.
Moreover, the properties of HFs, Haar integral
operational and Haar product operational matrices are
given and are utilized to provide a systematic
computational framework to find the optimal
trajectory and finite-time optimal control of the
vehicle engine-body vibration system approximately
with respect to a quadratic cost function by solving
only the linear algebraic equations instead of solving
the differential equations. One of the main advantages
is solving linear algebraic equations instead of solving
nonlinear Riccati equation to optimize the control
problem of the vehicle engine-body vibration system.
Numerical results are presented to illustrate the
applicability of the technique.

The rest of this paper is organized as fallows.
Section 2 introduces properties of the HFs. A dynamic
model of the engine-body vibration structure is
provided in Section 3. Algebraic solution of the
engine-body system is given in Section 4 and
development of optimal state trajectories and optimal
vibration control by HFs are presented in Section 5.
Simulation results of the vehicle engine-body
vibration system are shown in Section 6 and finally
the conclusion is discussed.

1.1. Notations

A:rxs matrix A with dimensionr xs;

1, identity matrix with dimension# x r;

0, zero matrix with dimensionr x r;

0,5 zero matrix with dimensionr x s;

® Kronecker product;

vec(X) the vector obtained by putting matrix X
into one column;

tr(4) trace of matrix A.

2. HAAR FUNCTIONS

The original objective of the wavelet theory is to
construct orthogonal bases of L,(*R). These bases
are constituted by translation and dilation of the same
function w(.) and ¢(.), namely wavelet function
and scaling function, respectively. These two
functions generate a family of functions that can be
used to break up or reconstruct a signal. To emphasis
the ‘marriage’ involved in building this ‘family’ ¢(.)
is sometimes called the ‘father wavelet’ and (.), the
‘mother wavelet’ [21,37].

The oldest and most basic of the wavelet systems is
named Haar wavelet, whose functions are given by

wo( =1, 1[0, 1), )
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L, for te[O, %),

)= -1, for teB, 1),

where @(t) = wo(t) and y; (1) =y (2t —k) for i>1
with i=2/ +k for j20 and 0<k<2/. We can

easily see that the w,(¢) and w,(¢) are compactly

supported, they give a local description, at different
scales j, ofthe considered function [25].

The finite series representation of any square

integrable function y(f) in terms of HFs in the

interval [0, 1), namely jp(¢), is given by
m—1 r
0= a1y =a" ¥, @), ()
i=0

a,] T and W, (0)=[yo (1)
w () -+ y/m_l(t)]T for m=2/ and the Haar coeffi-

where a=[ay a -

cients ¢g; are determined to minimize the mean
. 1
integral square error &£ = Io (y(t)- al ‘I’m(t))2 dt and

are given by
il
a;=2" [ y(0) yy(@0at. ®

Remark 1: The approximation error, E,(m)

= y(t)— 3(r), is depending on the resolution m and

is approaching zero by increasing parameter of the
resolution.
The integration of the vector ¥, (f) can be

approximated by
t
[ ¥n(r)dr = B, (1), 4)

where the matrix P,, represents the integral operator
matrix for piecewise constant basis functions on the
interval [0, 1) at the resolution m. For HFs, the

square matrix P, satisfies the following recursive
formula [24]:

2mP, -H,
2 2
- 5
ol o, 5)
2 2

1 _ 1

with A = 5 and Hm] = —H;diag(r) where the
m

vector r isrepresentedby r =(1,1,2,2, 4,4, 4,4,

"',(g), (?),-“,(g))r for m>2 and the matrix

(%) elements

i i+1 .
H, for —<t; <—— isdefined as
m m

Hm=[‘}'m(f0), LIlm(tl)a ) \Ilm(tm—l) :| (6)

On the other hand, the product of two vectors
W, (¢) is also evaluated as

Ry (0)= "1, (1 Y¥! ), )

where R, (?)
formula [24,28]

satisfies the following recursive

R, (1) H, diag(V (1))
2

1 2
R = 8
n= (H,diag(¥,(0))"  diag(H, ¥ (1)) ®
2 2

with R (1) =yo(f) v () and

7
Y, ()= [l//o(f), Z1OREN " (f)] =¥y (1),
2 2 (9

T
‘Pb(t) = [W%(t)a ‘//%H(t)"""//m—l(t):l .

3. THE VEHICLE ENGINE-BODY SYSTEM

In this section a dynamic formulation of the
characteristics of the vehicle engine-body vibration
system is provided for vibration control design. A
schematic diagram of the vehicle engine-body
vibration structure is shown in Fig. 3, where the
engine with mass M, and inertia moment [, is
mounted in the body by the engine mounts £,, ¢, and
the vehicle body with mass M, and inertia moment
1 is supported by front and rear tires, each of which is
modeled as a system consisting of a spring k;, and a

damping device c¢;. The front mount is the active

mount, the output force of which can be controlled by
an electric signal. The active mount consists of a main
chamber where an oscillating mass (inertia mass) is
moving up and down. The inertia mass is driven by an
electro-magnetic force generated by a magnetic coil
which is controlled by the input current.

In our study, only the bounce and pitch vibrations in
the engine and body are considered. It is assumed that
the actuator and sensor used to this control framework
are selected to be collocated, since this arrangement is
ideal to ensure the stability of the closed loop system
for a slightly damped structure. Furthermore, the
controller is tested for a single frequency signal,
which is used to simulate the engine disturbance at
particular frequency.
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Fig. 3. The sketch of engine-body vibration system
[9].

2L

The derivation of the dynamic equations for a four
degree-of-freedom vibration suspension model shown
in Fig. 3 accordingly follows [9]:

Mejél + 2063271 + 2kex1 et zcexz
= 2(L -Dk,x4 = f+4d,

Mpxs +2(c, +cp)xy +2(k, + ky )xy —2¢,% — 2k, X
+2(L - e %y +2(L = Dk ,xy =—~f,

13 + 202,50y + 2%k xy = 21%¢, %0 — 217k x4 = I,

- Zkexz - 2(L - Z)Cex“_

Ioiy + (L2 +(L =20, + 212, )iy + (12 +(L - 2D )k,

+ 202k )xy = 20% ¢ %5 - 217k x5 — 2lc, %) — 21k, X
+2(L - D%y +2(L—Dk,xy =-Lf,
(10)
where
f(¢): input force, which is used as the active force

to compensate the vibration transmitted to
vehicle body (or to the chassis);

d,(t): engine disturbance, which can be the excita-

tion, generated by the motion up/down of the
different parts inside the engine;

x(8), x2(1), x3(f), x4(¢): the bounces and pitches

of the engine and body, respectively.
The state-space representation of the system (10) is

M) + Ci(0) + Kx() = B f(0) + Byd,(6), (1)

where the state-space matrices are defined as

M, 0 0 0
0 M, 0 0
M= ,
0 0 I, 0
0 0 0 I

30 O R RRARAY R R R e e o SR —r T
I e i [N R I i | Lo
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Fig. 4. Displacement of the chassis respect to f£) (a)
and d(t) (b).
2c, —2c, 0 —2(L-1)c,
c -2¢, 2(c,+cy) 0 2(L-Dc,
= b4
0 0 2%,  -20%,
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Taking displacement of the chassis (x,(7)) as an
output then a comparison of the displacement
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response respect to the input force f(r) and the
external disturbance d,(r) in the frequency range up

to 1 KHz is depicted in Fig. 4(a) and 4(b). Three
relevant modes occur around the frequencies 1, 5 and
9 Hz, respectively, which represent the dynamics of
the main degrees of freedom (DOFs) of the system.

4. ALGEBRAIC SOLUTION OF SYSTEM
EQUATIONS

The problem of solving the second-order
differential equations of the engine-body system (10)
in terms of the input control and €X0genous
disturbance is investigated using HFs and an
appropriate algebraic equation is developed.

Based on definition of HFs on the time interval
[0, 1], we need to rescale the finite time interval (0,

Ty ]into [0,1] by considering ¢=T r 05 normalizeing

the system (11) with the time scale would be as
follows

Mi(o)+ Cx(o) + Kx(o) = By f(o)+B,d, (0).(12)

Now by integrating the system above in an interval
[O, 0], we obtain

M(x(o)—x(0)) + TfC(x(O') —-x(0) + T}K f()a x(r)dr

=T%B, jo" f(x)dr +T%B, j(;’de(r)dr.
(13)

To avoid the differentiation of HFs, we take again
the integration of (13) in the interval [0, o] as

follows:
M(x(0) = x(0) +T/C [Tx()dr + T2K [ [jx(r)drdg

=138, |7 j(f S@drde+ 138, [7 [2d, (r)dede
+ IOU(Mfc(O) +T,Cx(0)dE.
(14)

By using the HF expansion (2), we express in the
following the solution x(o), input force f(c) and

engine disturbance d,(c) in terms of HFs

xo)=X¥,(0),

fo)=FY¥, (o),
de(o) =D, ¥ ,(0),

(15)

where X :4xm,
the wavelet coefficients of x(c), f(o) and D, (o),
respectively. The initial conditions of x(0) and
x(0) are represented by x(0) = Xy, (o) and %(0)

F:lxm and D,:1xm denote

:)?0‘{’,”(0), where the matrices X;:4xm and

Xo:4xm are defined as

Xo=[x(0) 04 041 1,
(m-1)
04><1 ]

(m=1)

_ 16
KXo =[x(0) 044 {10

Therefore, using the HF expansions (15), the
relation (14) becomes

M(X - Xo)¥,, () +T,CX j(;’wm (t)dr + T3 KX
o o& 2 o & . 2
x jo IO‘{’m(r)drdészBfF jo J.O‘Pm(r)d‘,dcf+TdeDe

<7 [P (D)drde + (MRy +T ,CXy) [Pw,.(©ae
(17)
Moreover, using the Haar integral operational
matrix £, in (4) and omitting ¥, (o) in both
sides of (17), we have

m

M(X = Xo)+ T CXP, + T7KXP;} =T% B, FP? :
_ (18
$T5ByD, B} +(MXy +T ;CX,)P,.

For calculating the matrix X, we apply ths operator
vec(.) to (18) and according to the property of the

Kronecker product in the Appendix A1, the following
algebraic relation is obtained

(y ® M)(vece(X) —vec(Xy)) + T (P ® Chvec(X)
+THET ® K)vec(X) = T35 ® B, Yvec(F)

(19)
+T7(P2T ® Byyvee(D,)+ T (PF®Cyvec(x,)
+HEBy, ® M)vec(X,).
Solving (19) for vec(X) leadsto
vee(X) = Apvec(F) + Ayvec(D,) 20)

+Agvec(Xy) + Agvec(Xy),

where the matrices A, :4mxm, Ay idmxm, Ay
4mx4m, and A, :4mx4m are defined as
_ 72 T
A =THI (BRI ®C)
+ T (BT ®K)+1,, ® My (P2 ®B)),
Ay =TH(T (P ®C)
‘ 21
+ T3 (BT ®K)+1,, @ M) (P @ B,),
Ay =(T (B ®C)+TH(PT @ K) +1,, ® M)
x(1, ® M+T Pl ®C),



Optimal Vibration Control of Vehicle Engine-Body System using Haar Functions 719

Ay =(Ts(B) ®C)
+T5 (BT ® K)+1,, ® MY (P, ® M).

Consequently, from (20), (21) and the properties of
the Kronecker product, the solution of the system (11)
is approximately

x(6) = (Y1 (6) ® I, vec(X). (22)

5. OPTIMAL VIBRATION CONTROL
DESIGN

The control objective is to find the optimal control
f(r) with respect to a quadratic cost functional
approximately such acts as the active force to
compensate the vibration transmitted to vehicle body
(or the chassis). The quadratic cost functional weights
the states and their derivatives with respect to time in
the cost function as follows:

J:le(Tf)Slx(Tf)""lfCT(Tf)SzX(Tf)
2 ? 23)
"2 [0/ T 00u(0) + 57 (00(0) + RFOP,

where §;:4x4, §;:4x4, Q;:4x4 and @, :4x4

are positive-definite matrices and R is a positive
scalar. We can rewrite the cost function (23) as
follows:

| X(Tp)
J=%[xT(Tf) xT(Tf)]S{ f}

#(T )

0

(24)
1 Tf . ~ | X{
e M CHOR O] QL(O

}L Rf (1)),

where S =diag(S,, S,) and Q=diag(Q;, Q).

b4

Normalizing (24) with the time scale =T, o

yields
_l.r -1.T o *M Ty
J—E[x Q) fo D] Sl:T}lfc(l) +—2— 25)
1o 1.7 - X0) 2
" (@) T5 (o) 0 iy | R @D

From (15) and the relation x(c)=XY¥,(c), where

X : 4xm denotes the wavelet coefficients of x(c)
after its expansion in terms of HFs, we read

x(o) X ‘
T}l)'C(O') = T}l)—(; ¥, (0)= Xaug\Pm(o-)a (26)

X
where X, = ¥ and
s

vec( X, aug) = [ vecl (X) T}lvecT (X )J d . 27

Remark 2: By substituting x(c)=X Y, (o) into
x(o)—-x(0) = jgic(t)dt, we have:

XY, (0)-X,¥,,(c) = j(;’)‘(\ym(r)dr, (28)

and using (4), we read X —X,=XP,. Then, by
applying the operator of vec(.) and according to the

properties of Kronecker product in Appendix Al, we
obtain

vec(X) —vec(X,y) = (P,,f ® I, )vec(X). (29)

By substituting the definition (26) in (29) and using
the properties of the operator #(.) in Appendix Al,
the cost function (25) is given by

J =M, XT_5X L
—5(”( faug aug))'*'? (30)

X (tr(MX g OX 4 ) + Rir(MFT F),

where the matrices M, :mxm and M, :mxm
1
are defined as M,, = Io ‘Pm(a)\P,Tn(cr)dO' and M,y

= ‘Pm(l)‘I’,Tn(l), respectively. Using the properties of

the Kronecker product in Appendix Al, we can write
(30) as

J= l(vecT (X

> aig Mg W ® S)vec(X )

aug

+ T—f(vecT (X yug M T ® Q)vec(X ) (31)
> m m aug
+ RvecT (F)M,vec(F))

or

N1, vec(X,

1
J=5<vecT<X aug)

aug

(32)
+vec’ (I, vec(F)),

where the matrices Il,,:8mx8m and II,,:mxm
are defined as II,, =M}w ®§+Tf(MT ®Q) and
IL,, =RT M,

It is clear that the cost function of J(.) is a

respectively.
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i+1

function of Lsal- <——, then for finding the
m m

optimal control law, which minimizes the cost
functional J(.), the following necessary condition

should be satisfied

oJ

SreclF) 0. (33)

By considering vec(X,,,), which is a function of

ug
vec(F), and using the properties of derivatives of

inner product of Kronecker product in Appendix A2,
we find
& 1 dvec (Xypg) o
ovec(F) 2 ovec(F)  ovec(Xg,,)
x I, vec(X aug )

(vec (X, aug)

+————(vecT (F)I1,, ,vec(F))) 34
dvec(F) m2 '

To further investigate the relation (34), from
Appendix A3 we obtain

dvec’ (Xag) 0

ovec(F) [(¥) (9]

~ dvec(F) (35)
=[a] TAT (R ® 1)),

wherc;
(=) =vec (AT +vec (D,)A]
+vec! (XO)A3T +vec! ()_(O)Ai ,
(%) = T‘f‘ (27 ® I,)(Ayvec(F) + Ayvec(D,)
+ Ayvec(Xp) + Agvec(Xg) — vec(Xy)).
Therefore, we find

oJ

AT =1AT/ p-1
M_[Al Tf A] (Pm ®I4)] 1—Imlvec()(aug)

(36)
+11,,,vec(F).

Then the wavelet coefficients of the optimal control
law will be in vector form as

vee(F) = T[] T Al (R, @ I)]TL,, -
x vee(X g )-

Consequently, from (20), (27), (29), and (37) the
optimal vectors of vec(X) and vec(F) are found,

respectively, in the following forms

vec(X) = Ly + A (TLp[A] TAT (B ®14)] T,

I4m
-1 -1
{T‘l P e1,)" }) (Agvec(D,) + (M1,
f m

AT TIAT (P e 1)) I Do +Ay)

xvec(Xo) + Agvec(Xy)),
(38)
and

vec(F)=-TLplAl T /AT (B, ®1,)] T,

{ s I, +AIT;]

X m

T;l(Prz ®I4)A1 (74 1Him2

«[AT T AT (P_1 & I )1 N )_1
! ot m 475 ml }1 (P,T” ®I4)*1

x(Ayvec(D,)+ (All_l;lz[AIT T}IAIT (P,;1 ®14)] I,

O4m .
+A X, A X,
X|\T}1(Pn]l“®l4)—1:| 3)vec(Xy) + Agvec( X))

O4m
- _ X)),
T;l(P’; ®1,) 1 |vec(Xp)}
(39)

Finally, the Haar function-based optimal trajectories
and optimal control are obtained approximately from

(22)and £ () =P (t)vec(F).

Remark 3: According to the properties of HFs and
Haar product operational matrix in the Section 2, the
matrix M,, can be calculated from the following

recursive formula:

M, H ,diag(V, ()
My=o L2 @)
M\ (H ,diag(¥Ys (1)) diag(H, ‘¥ ,())
2 2

with M;(z)=1 and

T
$ (1= {ele‘Pm M. P, 1) ey B, (1)} ,
2
. T
@, ()= [eum‘I’m(l), NI () REPREN & 7 (1)} ,
2 2

(41)
where €; :[le(i—l)5 1, OIX(m—i)] for i=1, 2,, m.
Remark 4: Since the vector V¥, (o) is constant

within each of the m time intervals, the approximated
optimal trajectories (38) and optimal control (39) can
be expressed as
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x(t) = i Gyvec(Xg)+ ‘m; éivec(A_’o) + i Givec(De ),
i=1 i=1 i=1
(42)

m m m
f()=~(Q Fvec(X,) + ) Fvec(Xg) + 3 F; vee(D,))
i=1 i=1 i=1
(43)
with constant matrices G; :4x4m, G;:4x4m, G;:

i i
4><m,F,~:1><4m,I*_“,-:l><4m and ﬁ}:lxm within

each of time intervals LSO',- <i for i=0, 1,...,
m m
(m-1).

Remark 5: This fact of constant coefficient
matrices is a consequence of using piecewise constant
basis functions like HFs or Walsh functions, and
cannot be achieved with smooth function sets like
Legendre or Laguerre polynomials. Compared to
Walsh functions, the HFs have additional advantages
in computational effort. Of course, more detailed
investigations on using other basis functions than HFs
would be of interest.

6. NUMERICAL RESULTS

The parameters of the vehicle engine-body
vibration model, used for the design and simulation
are given in Tables 1 and 2. The objective is to find
the optimal states and optimal input force
approximately using HFs at the finite time interval
[0, 3]. Moreover, the matrices S} :4x4, §,:4x4,

0 :4x4 and Q,:4x4 and scalar R in the cost
function (23) are chosen as S;=5,=04, Q=
diag(l, 2, 1, 1), O, =diag(0.1, 0.2, 0.1, 0.1) and

Table 1. The vehicle body parameter.

Parameters Values
M, 1000 kg
I 810 kg m*
ky 20000 N/m
Cp 300 N/m/s
L, 2.5m
Table 2. The engine parameters.
Parameters Values
M, 250 kg
I, 8.10 kg m’
k, 200000 N/m
c, 200 N/m/s
L, 0.5m

x,{t) [m]

x40 [m]

Time (sec) Time (sec)

Fig. 5. Comparison of state trajectories found by HFs
at resolution level j =35 (solid line) and by
analytic solution (dashed line).

0.06

0.04

f(t) [N]

Time (sec)

Fig. 6. Comparison of input force found by HFs at
resolution level j =5 (solid line) and by
analytic solution (dashed line).

0.01

0.005 !

x,(t) [m]
o

-0.005 -

-0.01
0

Time (sec)

Fig. 7. Comparison of displacement of the chassis
found by HFs at resolution level j=5 (solid
line), j =4 (dashed line) and by analytic
solution (dashed-dot line).

R=1.

To show effect of the proposed optimal vibration
control, the third mode of the low frequency range
(see Fig. 4) is investigated and assumed to be excited
by an external disturbance d,(f) as a Sin()

function at the frequency 9Hz. Figs. 5 and 6 show
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the comparison of states x(o) and optimal vibration

control f(o) found by HFs at resolution Ievel

7 =5 and the analytic solution found by solving the

differential Riccati equation in Appendix A4,
respectively. Figures.show that the HFs can construct
the vibration signals as well. Moreover, by increasing
frequency of the external disturbance to 0.5KHz, the

approximation displacement of the chassis (x,(7)) at
the resolution levels j=4 and 5 are plotted and

compared to the analytic solution in Fig. 7. It is clear
that by increasing the resolution level j the accuracy
of the approximation can be improved as well.
Different from the analytic solution using the
nonlinear Riccati equation, the approximate solutions
(38) and (39) deliver both, control f () and state
trajectory x(¢) in one step, while mean square error can

easily be improved by increasing the resolution level j.

7. CONCLUSION

This paper presented a method of designing optimal
vibration control based on Haar functions (HFs) to
control of bounce and pitch vibrations in engine-body
vibration structure. Utilizing properties of HFs, a
computational method to find optimal vibration
control for the engine-body system was developed. It
was shown that the optimal state trajectories and
optimal vibration control are calculated approximately
by solving only algebraic equations instead of solving
the Riccati differential equation. The simulation
results were included to illustrate the validity and
applicability of the proposed technique.

APPENDIXE A
A.1. Some properties of Kronecker product [38]
Let A:pxgq, B:gxr, C:rxs and D: gxt¢t

be fixed matrices, then we have:

vec(ABC) = (CT ® A)vec(B),
tr(ABC) =vec (47 (I, ® B)vec(C),
tr(4BC) =vec” (47 I, ® B)vec(C),
(AR C)D®B)= AD® CB.

A.2. Derivatives of inner products of Kronecker
product [38]

Let A: nxn be fixed constants and x:nx1 be a

vector of variables. Then, the following results can be

established:

A _ e a),
o(Ax)
=4,
o
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a(xT Ax)
Ox

= Ax+ A x.

A.3. Chain rule for matrix derivatives using Kronecker
product [38]
Let Z bea pxg matrix whose entries are a matrix

function of the elements of Y:sx¢, where Y isa
function of matrix X: mxn. That is, Z=H;(Y),
where Y =H,(X). The matrix of derivatives of Z
with respectto X is given by

T
Z _Jovee Mgy Ll o
oX oX P

oz |
avec(Y) ]’

A.4. Analytic solution to optimal control problem
Taking z;(t)=x(f) and 2z,(f)=x (¢t) yields an

augmented model for the second-order linear system
(11) as follows:

N T R 0 0+l O la
A P CE PR A0

and the quadratic cost function (23) can be also
represented by

=3 [V E 0G0+ roha,

where z(1)=[z/ (1) z (1)), O=diag(Q, Q) and
the matrices of S; and S, are assumed to be zero.

We can solve the following Riccati differential
equation [39]

. I 0 1
K=-%0) _m7c| |-M'k -m7IC

0 0

M7k
x K () + R_IK(t){

xK (1)~ 0,

where K(7,)=0, then the exact solution to optimal

control problem will be obtained as

0 0

T
Mﬁle M_le} K(®)z(t) = -L(t)z(¢),

J()=-R" {

where the row vector L(¢f) is named the optimal

feedback gain.
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