• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,619, Processing Time 0.031 seconds

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

A Novel Type of Discrete Time Predictive Current Controllers for Parallel Resonant Inverters (병렬 공진형 인버터에서 사용되는 새로운 형태의 이산시간 예측 전류 제어기)

  • Huh, Sung-Hoi;Choy, Ick;Kim, Kwon-Ho;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.309-311
    • /
    • 1996
  • In this paper, we propose two types of novel discrete time current control methods of modified fixed band hysteresis control and optimal control for Parallel Resonant DC Link Inverters(PRDCLI). Because zero bus voltage intervals are generated on the DC link of PRDCLI, we can obtain the information of counter electromotive force(emf) by a simple estimation strategy. The proposed current controllers predict the currents of the next resonant cycle using the obstained information of counter emf and the average values of DC link voltages. The computer simulation results for a simple equivalent circuit of induction motor show that the proposed control methods are more effective than conventional methods.

  • PDF

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

A Design of PID controller in Two-Mass System Using Optimal Pole Assignment (최적 극배치를 이용한 2관성 공진계의 PID 제어기 설계)

  • Jeon, Don-Su;Kim, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.815-817
    • /
    • 1999
  • In the two-mass system driving a load through a flexible shaft or transmission system, a shaft torsional vibration is often generated. In this case, it's difficult to control only by conventional PI controller. To solve this problem. the two-mass speed control system with PID controller is designed by using pole assignment method, and an optimum PID parameters are derived by evaluating ITAE(Integral of time multiplied by the absolute error) performance index. Simulation results show the validity of the proposed PID controller and this controller is compared with the conventional PID controller.

  • PDF

Power Control of Induction Heating Process for TR forging (TR 단조를 위한 유도 가열 공정의 전력제어)

  • Song M. C.;Ju S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.230-233
    • /
    • 2004
  • The purpose of this study is to establish the optimal induction heating conditions of various preform types used for TR forging. The finite element model coupled electro-magnetic and transient heat transfer was employed to evaluate the distribution of temperature at the billet. Power control method was applied to control temperature of preform in induction heating because TR forging is not a continuous process. Power schedule that consists of heating and holding stage was suggested. In heating stage, power is inversely proportional to diameter of preform but the time of heating stage is directly proportional to the diameter of preform. But, in holding stage, the required power for thermal equilibrium per unit volume of the billet decreases with an increase in a diameter of billet due to the increase of efficiency.

  • PDF

The Review of JPEG2000 Algorithm using Optimal Rate Control (비율 제어 최적화를 이용한 JPEG2000 알고리즘 리뷰)

  • Chong, Hyun-Jin;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • Abstract JPEG2000 achieve quality scalability through the rate control method used in the encoding process, which embeds quality layers to the code-stream. This architecture might raise two drawbacks. First, when the coding process finishes, the number and bit-rates of quality layers are fixed, causing a lack of quality scalability to code-stream encoded with a single or few quality layers. Second, in Post compression rate distortion (PCRD) the bit streams after the truncation points discarded. Therefore, computational power for the discarded bit streams is wasted. For solving of problem, through bit rate control, there are many researches. Each proposed algorithms have specially target feature that is improved performance like reducing computational power. Research results have strength and weakness. For the mean time, research contents are reviewed and compared, so we proposed research direction in the future.

  • PDF

Least Squares Based PID Control of an Electromagnetic Suspension System

  • Park, Yon-Mook;Nam, Myeong-Ryong;Seo, In-Ho;Lee, Sang-Hyun;Lim, Jong-Tae;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2252-2257
    • /
    • 2003
  • In this paper, we develop the so-called functional test model for magnetic bearing reaction wheels. The functional test model has three degree of freedom, which consists of one axial suspension from gravity and the other two axes gimbaling capability to small angle, and does not include the motor. For the control of the functional test model, we derive the optimal electromagnetic forces based on the least squares method, and use the proportional-integral-derivative controller. Then, we develop a hardware setup, which mainly consists of the digital signal processor and the 12-bit analog-to-digital and digital-to-analog converters, and show the experimental results.

  • PDF

Least Squares Based PID Control of an Electromagnetic Suspension System

  • Park, Yon-Mook;Tahk, Min-Jea;Nam, Myeong-Ryong;Seo, In-Ho;Lee, Sang-Hyun;Lim, Jong-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2003
  • In this paper, we develop the so-called functional test model for magnetic bearing wheels. The functional test model developed in this paper is a kind of electromagnetic suspension systems and has three degree of freedom, which consists of one axial suspension from gravity and the other two axes gimbaling capability to small angle, and does not include the motor. For the control of the functional test model, we derive the optimal electromagnetic forces based on the least squares method, and use the proportional-integral derivative controller. Then, we develop a hardware setup, which mainly consists of the digital signal processor and the 12-bit analog-to-digital and digital-to-analog converters, and show the experimental results.

The Optimal Design of Fractional-slot SPM to Reduce Cogging Torque and Vibration

  • Cho, Gyu-Won;Jang, Woo-Sung;Jang, Ki-Bong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.753-758
    • /
    • 2012
  • This paper deals with the analysis of vibration and noise sources in a modular-type SPM fractional-slot motor. To reduce cogging torque, torque ripple and unequal radial force, which are the main causes of the electromagnetic vibration, the optimal shape of notch and magnet are designed.

Digital Tryout Technique for the Conventional Stamping Process of Hard-to-Form Parts (난성형부품의 성형공정개발을 위한 디지털트라이아웃)

  • Shim, H.B.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • A tryout is a series of process optimization for robust stamping before transfer to the press shop. During tryout, the drawbead control, blank shape determination, binder surface modification, etc., are carried out mainly by a trial-and-error approach. As the level of difficulty of the stamping process increases, the formability becomes more sensitive to the contour of deformed shape, i.e. the blank shape. A digital tryout technique, which simulates a real tryout process, is proposed in this study for challenging stamping processes. Since digital tryout is carried out on a desktop, not in a press shop, a precise control of the deformed contour can be achieved if an optimal blank design technique is utilized. In this work, the proposed digital tryout technique is validated by successful applications to different automotive parts.