• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,631, Processing Time 0.028 seconds

Design of an Optimal State Feedback Controller for Container Crane Systems with Constraints (제약조건을 가지는 컨테이너 크레인 시스템용 최적 상태궤환 제어기 설계)

  • 주상래;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.50-56
    • /
    • 2000
  • This paper presents the design of an optimal state feedback controller for container cranes under some design specifications. To do this, the nonlinear equation of a container crane system is linearized and then augmented to eliminate the steady-state error, and some constraints are derived from the design specifications. Designing the controller involves a constrained optimization problem which classical gradient-based methods have difficulties in handling. Therefore, a real-coding genetic algorithm incorporating the penalty strategy is used. The responses of the proposed control system are compared with those of the unconstrained optimal control system to illustrate the efficiency.

  • PDF

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

Prototype Hardware Design and Optimal Algorithm of PC Based Start·Stop Control System for Tidal Generation (조력용 PC 기반 기동·정지 제어시스템의 최적화 알고리즘과 시제품 하드웨어 설계)

  • Kim, Yoon-Sang;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.89-94
    • /
    • 2014
  • Tidal generation has become one of environmentally friendly new and renewable future sources of energy. The Sihwa Tidal Power Plant in South Korea, which was imported from abroad by turnkey type in 2011, connected to the power system in 2012, and is currently under commercial operation. However, leading companies are reluctant to disclose their technologies associated with the control systems and are not cooperative in technology transfers, making it a high priority to develop core technologies in South Korea. In order to develop a start stop control system for tidal generation, this paper presents the optimal algorithm for decision making and prototype of hardware design. First, control systems in tidal power, such as plant operation control, data interfaces between systems, monitoring and control points of the control system, are analyzed. The software development and PC based emulator processes for optimization algorithm processing are described. Finally, verification of the algorithm implementation, hardware platform for start stop control device, and implementation of prototype control system were discussed.

Application of Reverse Engineering System for Improvement of Curl Distortion in Stereolithography Process (광조형 공정시 휨에 의한 변형을 개선하기 위한 역설계 시스템의 적용)

  • Che, Woo-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The slender device(long length and thin width) manufactured by stereolithography process suffers from large curl distortion. This paper adapts two control parameters such as a critical exposure and a penetration depth. The measurement of the test parts dimension are carried out by reverse engineering method with the optical 3-dimensional measurement equipment. We investigate how each parameter contributes to the part accuracy and estimates the optimal set of parameters which minimizes the dimensional error of the test parts. Finally, As being an the RAM slot as being an example of the slender device, the RAM slot is made with the optimal values of control parameter and the results are investigated

  • PDF

A Discrete Optimal Control Model for Capacity Expansion Planning of FMS (유연생산(柔軟生産) 시스템(FMS : Flexible Manufacturing Systems)의 용량확충을 위한 이산적 최적 제어 모델)

  • Park, Tae-Hyeong;Kim, Seung-Gwon;Kim, Seong-In;Gang, Seok-Hyeon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.2
    • /
    • pp.131-141
    • /
    • 1988
  • As flexible manufacturing technology has become available across a broad range of applications, an increasingly large number of firms have confronted decisions about when to adopt the FMS technology and the size of FMS at that time. For small to medium size firms that should invest under budget limitation and high investment risk, proper size of FMS adoption at proper time is very important. In this paper the discrete optimal control theory has been used to make decisions about the size and timing of FMS capacity expansion over a planning period. Sensitivity analysis is presented for analysing the behavior of the model to variations of model parameters.

  • PDF

An Approach to Optimal Dispatch Scheduling Incorporating Transmission Security Constraints

  • Chung, Koo-Hyung;Kang, Dong-Joo;Kim, Balho H.;Kim, Tai-Hoon;Oh, Tae-Kyoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.199-206
    • /
    • 2008
  • The introduction of competition in electricity markets emphasizes the importance of sufficient transmission capacities to guarantee effective power transactions. Therefore, for the economic and stable electric power system operation, transmission security constrains should be incorporated into the dispatch scheduling problem. With the intent to solve this problem, we decompose a dispatch scheduling problem into a master problem(MP) and several subproblems(SPs) using Benders decomposition. The MP solves a general optimal power flow(OPF) problem while the SPs inspect the feasibility of OPF solution under respective transmission line contingencies. If a dispatch scheduling solution given by the MP violates transmission security constraints, then additional constraints corresponding to the violations are imposed to the MP. Through this iterative process between the MP and SPs, we derive an optimal dispatch schedule incorporating the post-contingency corrective rescheduling. In addition, we consider interruptible loads as active control variables since the interruptible loads can participate as generators in competitive electricity markets. Numerical examples demonstrate the efficiency of the proposed algorithm.

A Study on Minimum Time Position Control of DC Servo-Motor (DC Servo Motor의 최단시간 위치 제어)

  • 양주호
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.39-44
    • /
    • 1992
  • Analog PID controllers have been designed to make good use of position control in industries. Recently, the importance of digital position control is emphasized for the requirements of controller which are not only to control the objects but to include various aspects such as easiness of design and implementation, simple exchange of control program and convenient communications of data between various controllers and a host computer. This study proposes a combined control method which is mixed the vaiable structure control (VSC) with the PI control for minimum time position control of DC servo motor by microcomputer. The results of test by this method show offset-free and minimum time optimal position control which is not affected by the disturbance and the system parameter variations. The validity of the proposed method comparing with the conventional PID control is proved by the response experiments.

  • PDF

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

Study on the Development of Multi Heat Supply Control Algorithm in Apartment Building of District Heating Energy (지역난방 에너지 공동주택의 다중 열공급 제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, J.K.;Choi, Y.D.;Park, M.H.;Shin, J.K.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.63-70
    • /
    • 2011
  • In the present study, we developed optimal heat supply algorithm which minimizes the heat loss through the distribution pipe line in group energy apartment. Heating load variation of group energy apartment building in accordance with outdoor air temperature was predicted by the correlation obtained from calorimeter measurements of whole households of apartment building. Supply water temperature and mass flow rate were conjugately controlled to minimize the heat loss rate through distribution pipe line. Group heating apartment located in Hwaseong city, Korea, which has 1,473 households divided in 4 regions, was selected as the object apartment for verifying the present heat supply control algorithm. Compared to the original heat supply system, 10.4% heat loss rate reduction can be accomplished by employing the present control algorithm.

Optimizing Work-In-Process Parameter using Genetic Algorithm (유전 알고리즘을 이용한 Work-In-Process 수준 최적화)

  • Kim, Jungseop;Jeong, Jiyong;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • This research focused on deciding optimal manufacturing WIP (Work-In-Process) limit for a small production system. Reducing WIP leads to stable capacity, better manufacturing flow and decrease inventory. WIP is the one of the important issue, since it can affect manufacturing area, like productivity and line efficiency and bottlenecks in manufacturing process. Several approaches implemented in this research. First, two strategies applied to decide WIP limit. One is roulette wheel selection and the other one is elite strategy. Second, for each strategy, JIT (Just In Time), CONWIP (Constant WIP), Gated Max WIP System and CWIPL (Critical WIP Loops) system applied to find a best material flow mechanism. Therefore, pull control system is preferred to control production line efficiently. In the production line, the WIP limit has been decided based on mathematical models or expert's decision. However, due to the complexity of the process or increase of the variables, it is difficult to obtain optimal WIP limit. To obtain an optimal WIP limit, GA applied in each material control system. When evaluating the performance of the result, fitness function is used by reflecting WIP parameter. Elite strategy showed better performance than roulette wheel selection when evaluating fitness value. Elite strategy reach to the optimal WIP limit faster than roulette wheel selection and generation time is short. For this reason, this study proposes a fast and reliable method for determining the WIP level by applying genetic algorithm to pull system based production process. This research showed that this method could be applied to a more complex production system.