• Title/Summary/Keyword: Optimal Conditions

Search Result 6,881, Processing Time 0.042 seconds

Production of Poly(3-hydroxybutyrate) Using Waste Frying Oil (Waste frying oil를 사용한 Poly(3-Hydroxybutyrate) 생합성)

  • Kim, Tae-Gyeong;Lee, Woosung;Gang, Seongho;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 2019
  • In this study, the optimal growth and poly(3-hydroxybutyrate) (PHB) biosynthesis of Pseudomonas sp. EML2 were established using waste frying oil (WFO) as a cheap carbon source. The fatty acid composition of WFO and fresh frying oil (FFO) were analyzed by gas chromatography. The unsaturated and saturated fatty acid contents of the FFO were 82.6% and 14.9%, respectively. These contents changed in the WFO. The compositional change in the unsaturated fatty acid content in the WFO was due to a change in its chemical and physical properties resulting from heating, an oxidation reaction, and hydrolysis. The maximum dry cell weight (DCW) and PHB yield (g/l) of the isolated strain Pseudomonas sp. EML2 were confirmed under the following culture conditions: 30 g/l of WFO, 0.5 gl of $NH_4Cl$, pH 7, and $20^{\circ}C$. Based on this, the growth and PHB yield of Pseudomonas sp. EML2 were confirmed by 3 l jar fermentation. After the cells were cultured in 30 g/l of WFO for 96 h, the DCW, PHB content, and PHB yield of Pseudomonas sp. EML2 were 3.6 g/l, 73 wt%, and 2.6 g/l, respectively. Similar results were obtained using 30 g/l of FFO as a carbon source control. Using the FFO, the DCW, PHB content, and PHB yield were 3.4 g/l, 70 wt%, and 2.4 g/l, respectively. Pseudomonas sp. EML2 and WFO may be a new candidate and substrate, respectively, for industrial production of PHB.

Preliminary Study on the Development of a Platform for the Selection of Optimal Beach Stabilization Measures against the Beach Erosion - Centering on the Yearly Sediment Budget of Mang-Bang Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구-맹방해변 이송모드별 년 표사수지를 중심으로)

  • Cho, Yong Jun;Kim, In Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.28-39
    • /
    • 2019
  • In the design process of counter measures against the beach erosion, information like the main sediment transport mode and yearly net amount of longshore and cross shore transport is of great engineering value. In this rationale, we numerically analyzed the yearly sediment budget of the Mang-Bang beach which is suffering from erosion problem. For the case of cross sediment transport, Bailard's model (1981) having its roots on the Bagnold's energy model (1963) is utilized. In doing so, longshore sediment transport rate is estimated based on the assumption that longshore transport rate is determined by the available wave energy influx toward the beach. Velocity moments required for the application of Bailard's model (1981) is deduced from numerical simulation of the nonlinear shoaling process over the Mang-Bang beach of the 71 wave conditions carefully chosen from the wave records. As a wave driver, we used the consistent frequency Boussinesq Eq. by Frelich and Guza (1984). Numerical results show that contrary to the Bailard's study (1981), Irribaren NO. has non negligible influence on the velocity moments. We also proceeds to numerically simulate the yearly sediment budget of Mang-Bang beach. Numerical results show that for ${\beta}=41.6^{\circ}$, the mean orientation of Mang-Bang beach, north-westwardly moving longshore sediment is prevailing over the south-eastwardly moving sediment, the yearly amount of which is simulated to reach its maxima at $125,000m^3/m$. And the null pint where north-westwardly moving longshore sediment is balanced by the south-eastwardly moving longshore sediment is located at ${\beta}=47^{\circ}$. For the case of cross shore sediment, the sediment is gradually moving toward the shore from the April to mid October, whereas these trends are reversed by sporadically occurring energetic wind waves at the end of October and March. We also complete the littoral drift rose of the Mang-Bang beach, which shows that even though the shore line is temporarily retreated, and as a result, the orientation of Mang-Bang beach is larger than the orientation of null pont, south-eastwardly moving longshore sediment is prevailing. In a case that the orientation of Mang-Bang beach is smaller than the orientation of null pont, north-westwardly moving longshore sediment is prevailing. And these trend imply that the Mang-Bang beach is stable one, which has the self restoring capability once exposed to erosion.

Optimization of Analytical Method for Annatto Pigment in Foods (식품 중 안나토색소 분석법 최적화 연구)

  • Lee, Jiyeon;Park, Juhee;Lee, Jihyun;Suh, Hee-Jae;Lee, Chan
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.298-309
    • /
    • 2021
  • In this study we sought to develop a simultaneous analysis method for cis-bixin and cis-norbixin, the main components, to detect annatto pigment in food. To establish the optimal test method, the HPLC analysis methods of the European Food Safety Authority (EFSA), Japan's Ministry of Health, Labor and Welfare (MHLW), and National Institute of Food and Drug Safety Evaluation (NIFDS) were compared and reviewed. In addition, a new pretreatment method applicable to various foods was developed after selecting conditions for simultaneous high-performance liquid chromatography (HPLC) analysis in consideration of linearity, limit of detection (LOD), limit of quantification (LOQ), and analysis time. The HPLC analysis method of NIFDS showed the best linearity (R2 ≥ 0.999), exhibiting low detection and quantification limits for cis-norbixin and cis-bixin as 0.03, 0.05 ㎍/mL, and 0.097, 0.16 ㎍/mL, respectively. All previously reported pretreatment methods had limitations in various food applications. However, the new pretreatment method showed a high recovery rate for all three main food groups of fish meat and meat products, processed cheese and beverages. This method showed an excellent simultaneous recovery rate of 98% or more for cis-bixin and cis-norbixin. The HPLC analysis method with a new pretreatment method showed high linearity with a coefficient of determination (R2) of 1 for both substances, and the accuracy (recovery rate) and precision (%RSD) were 98% and between 0.4-7.9, respectively. From this result, the optimized analytical method was considered to be very suitable for the simultaneous analysis of cis-bixin and cis-norbixin, two main components of annatto pigment in food.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea (국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명)

  • Yang, Jihye;Kim, Danu;Oh, Yuna;Jeon, Soyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.21-33
    • /
    • 2021
  • The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site. From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

Optimizing In Vitro Propagation of Sophora koreensis Nakai using Statistical Analysis (다양한 통계분석 기법을 이용한 개느삼(Sophora koreensis Nakai)의 기내 증식 최적 조건 구명)

  • Jeong, Ukhan;Lee, Hwa;Park, Sanghee;Cheong, Eun Ju
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.53-63
    • /
    • 2021
  • Sophora koreensis Nakai is an indigenous plant in Koreawith a restricted natural range, part of which is in Gangwon province. The species is known to contain phytochemicals that have beneficial effects on human health, and it is economically important in bioindustry. Because of the limited number of plants in a small range of habitats, the mass-propagation method should be developed for use and conservation. In vitro tissue culture is a reliable method in terms of mass propagation from selected clones of the species. We investigated the optimal conditions of the medium in this process, especially focusing on the concentrations of plant growth regulators(PGRs) in the culture of stem-containing axillary buds. Three statistical methods, i.e., ANOVA, response surface method(RSM), and fuzzy clustering were used to analyze the plant growth, number of shoots induced, and shoot length with various combinations of PGRs. Results from the RSM differed from those of the other two methods; thus, the method was not suitable. ANOVA and fuzzy clustering showed similar results. However, more accurate results were obtained using fuzzy clustering because it provided a probability for each treatment. On the basis of the fuzzy clustering analysis, stem tissue produced the greatest number of shoots(11.03 per explant; 63.33%) on a medium supplemented with 5-��M 6-benzylaminopurine and 2.5-��M thidiazuron(TDZ). Proliferation of shoots(2.18 ± 0.21 cm, 63.33%) was attained on a medium supplemented with 2.5-��M BA, 2.5-��M TDZ, and 2.5-��M gibberellic acid.

Evaluation Method of Cosmetics for the Effect of Fine Dust Adhesion Prevention Using Floating Chamber (부유챔버를 이용한 화장품의 미세먼지 부착방지 효과 평가법)

  • Kim, Woncheol;Kim, Han Jo;Boo, Yong Chool;Koh, Jae Sook;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.319-327
    • /
    • 2020
  • Particulate matters (PM) are small particulate pollution that decrease the function of skin barrier, which causes inflammatory skin diseases and extrinsic aging. In this study, we evaluated the effect of preventing the adherence of PMs from several cosmetic products applied to human skin using iron oxide black. The PM floating chamber consists of skin exposure area, PM inlet, floating power device, and an outlet so that PM can be naturally attached to the skin while floating in the chamber. The change in skin brightness according to the floating concentration of alternative fine dust was checked to confirm the optimal floating concentration conditions. The intensity difference (before-after intensity, Δ) before and after adhesion of iron oxide black was proportional to the amount of PM adhered. The anti-adherence effect of iron oxide black on five cosmetic products were evaluated through 20 each subjects by comparing the amount of iron oxide black adhered on the control and treatment. The difference in brightness before and after the iron oxide black attached to the skin was calculated and compared with the control group(p < 0.05). When over 150 mg of iron oxide black was adhered on the skin, the interference of intensity was low and clearly showed the skin adhered pattern. According to the application of the five cosmetics, the intensity difference was significantly lower than the control group. This means that depending on the product, it prevented the attachment of iron oxide black. This study is a safe and useful method to confirm the prevention of PM skin adherence. In conclusion, cosmetics can prevent the adherence of PM on the skin according to the formulation or ingredients characteristics.

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Quality Changes as Affected by Storage Temperature and Polyamide Film Packaging in Paprika (Capsicum annuum L.) (파프리카 저장 온도 변화와 폴리아미드 필름 포장 적용에 따른 품질 변화)

  • Erdene, Byambaa Bayar;Lee, Jung-Soo;Park, Me Hea;Choi, Ji Won;Eum, Hyang Lan;Malka, Siva Kumar;Yun, Yeoeun;Kim, Chae-Hee;Kim, Ho Cheol;Lee, Jinwook;Park, Ki Young;Bae, Jong Hyang;Lee, YounSuk;Jeong, Cheon Soon;Park, Jong-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.115-125
    • /
    • 2022
  • The purpose of this study was to examine the effect of packaging on quality maintenance of paprika (Capsicum annuum L. cv. Nagano RZ) stored at three different temperatures. In Korea, paprika is stored and distributed under ambient conditions. To ensure the freshness maintenance, determining optimal storage temperature is necessary. Paprika were unpacked (control) or packed with polyamide film and stored at 5℃, 10℃ and 20℃ for 35 days. Quality characteristics such as weight loss and appearance were examined. Paprika packed with polyamide film showed less quality changes compared to unpacked paprika under all the storage temperatures. The commercial properties tended to decrease rapidly during storage at 20℃ regardless of packing. The degree of weight loss was significantly lower in packed paprika compared to unpacked paprika. It was found that soluble solids, pigments, hardness, etc. were complexly affected by storage temperature and film packaging. For paprika, the storage temperature of 5℃ or 10℃ was effective in maintaining freshness; paprika packed in polyamide film packing maintained greater freshness than unpacked paprika. Our results showed that, packaging is required to preserve the freshness and to improve the marketability of paprika in the domestic market. It seems that it is necessary to continuously search for an effective packaging method.

Development of Summer Leaf Vegetable Crop Energy Model for Rooftop Greenhouse (옥상온실에서의 여름철 엽채류 작물에너지 교환 모델 개발)

  • Cho, Jeong-Hwa;Lee, In-Bok;Lee, Sang-Yeon;Kim, Jun-Gyu;Decano, Cristina;Choi, Young-Bae;Lee, Min-Hyung;Jeong, Hyo-Hyeog;Jeong, Deuk-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Domestic facility agriculture grows rapidly, such as modernization and large-scale. And the production scale increases significantly compared to the area, accounting for about 60% of the total agricultural production. Greenhouses require energy input to create an appropriate environment for stable mass production throughout the year, but the energy load per unit area is large because of low insulation properties. Through the rooftop greenhouse, one of the types of urban agriculture, energy that is not discarded or utilized in the building can be used in the rooftop greenhouse. And the cooling and heating load of the building can be reduced through optimal greenhouse operation. Dynamic energy analysis for various environmental conditions should be preceded for efficient operation of rooftop greenhouses, and about 40% of the solar energy introduced in the greenhouse is energy exchange for crops, so it should be considered essential. A major analysis is needed for each sensible heat and latent heat load by leaf surface temperature and evapotranspiration, dominant in energy flow. Therefore, an experiment was conducted in a rooftop greenhouse located at the Korea Institute of Machinery and Materials to analyze the energy exchange according to the growth stage of crops. A micro-meteorological and nutrient solution environment and growth survey were conducted around the crops. Finally, a regression model of leaf temperature and evapotranspiration according to the growth stage of leafy vegetables was developed, and using this, the dynamic energy model of the rooftop greenhouse considering heat transfer between crops and the surrounding air can be analyzed.