• Title/Summary/Keyword: Optimal Assignment

Search Result 333, Processing Time 0.032 seconds

A Code Assignment Algorithm for Microinstructions (마이크로 명령어의 코드 할당 알고리즘)

  • Kim, H.R.;Kim, C.S.;Hong, I.S.;Lim, J.Y.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.587-590
    • /
    • 1988
  • In the case of VLSI computer system control unit design using PLA, optimal state code assignment algorithm to minimize the PLA area is proposed. An optimal state code assignment algorithm which considers output state and logic minimization simultaneously is proposed, and by means of this, algorithm product term is minimized. Also, by means of this algorithm running time and memory capacitance is decreased as against heuristic state code assignment algorithm which uses matrix calculation and considers the constraint relation only. This algorithm is implemented on VAX 11/750 (UNIX4.3BSD). Through the various test example applied proposed algorithm, the efficiency of this algorithm is shown.

  • PDF

A Study of the Optimal Job Assignment for the Different Semi-automatic Machines (이종반자동설비의 최적작업할당연구 -확률적 사이클타임의 경우를 중심으로-)

  • 김광섭;황의철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.133-141
    • /
    • 1987
  • Man-machine assignment problem with random service and processing times is considered in this paper. Assuming heterogeneous semi-automatic machines, the problem is dealt with as follow; 1. For the different type of machines that have probabilistics distribution of processing time and nan service time, man·machine assignment problem is solved by heuristic method using expected time value if machine. 2. Since each related time is a random variable, the performance of the optimal assignment obtained from the above method is verified through monte carlo simulation method. 3. The above procedures are programed by BASIC language to use easily and rapidly in the personal computer. The result of this study can contribute to productivity enhancement by increasing the efficiencies of both operators and machines.

  • PDF

Optimal Design of Satellite Customer Assignment using Genetic Algorithm (유전자알고리즘을 적용한 위성고객할당 최적 설계)

  • Kim, Sung-Soo;Kim, Choong-Hyun;Kim, Ki-Dong;Lee, Sun-Yeob
    • IE interfaces
    • /
    • v.19 no.4
    • /
    • pp.300-305
    • /
    • 2006
  • The problem of assigning customers to satellite channels is considered in this paper. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of GA with CPLEX8.1 is presented to show the advantages of this approach in terms of computation time and solution quality.

Improving Efficiency of Timeslot Assignment for Non-realtime Data in a DVB-RCS Return Link: Modeling and Algorithm

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Ho-Jin;Oh, Deock-Gil
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.211-218
    • /
    • 2003
  • This paper presents a dynamic resource allocation algorithm with multi-frequency time-division multiple access for the return link of interactive satellite multimedia networks such as digital video broadcasting return channel via satellite systems. The proposed timeslot assignment algorithm, called the very efficient dynamic timeslot assignment (VEDTA) algorithm, gives an optimal assignment plan within a very short period. The optimality and computational efficiency of this algorithm demonstrate that it will be useful in field applications.

  • PDF

Pilot Assignment Algorithm for Uplink Massive MIMO Systems (상향링크 Massive MIMO 시스템에서 파일럿 할당 알고리즘)

  • Jang, Seokju;Kong, Han-Bae;Lee, Inkyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1485-1491
    • /
    • 2015
  • This paper introduces a new pilot assignment algorithm for uplink Massive multiple-input multiple-output (MIMO) systems. Since the conventional pilot assignment algorithm has the performance degradation compared to the optimal algorithm which performs the exhaustive search, we propose a new pilot assignment algorithm using Pre-determined Interference and Pre-determined Desired-term techniques. The proposed algorithm has the low complexity and guarantees negligible performance loss compared to the optimal algorithm. Simulation result verifies that the proposed algorithm achieves a large performance gain over the conventional algorithm.

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times: a Case Study on a Paper Remanufacturing System

  • Kim, Jun-Gyu;Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this paper, we report a case study on the common due-date assignment and scheduling problem in a paper remanufacturing system that produces corrugated cardboards using collected waste papers for a given set of orders under the make-to-order (MTO) environment. Since the system produces corrugated cardboards in an integrated process and has sequence-dependent setups, the problem considered here can be regarded as common due-date assignment and sequencing on a single machine with sequence-dependent setup times. The objective is to minimize the sum of the penalties associated with due-date assignment, earliness, and tardiness. In the study, the earliness and tardiness penalties were obtained from inventory holding and backorder costs, respectively. To solve the problem, we adopted two types of algorithms: (a) branch and bound algorithm that gives the optimal solutions; and (b) heuristic algorithms. Computational experiments were done on the data generated from the case and the results show that both types of algorithms work well for the case data. In particular, the branch and bound algorithm gave the optimal solutions quickly. However, it is recommended to use the heuristic algorithms for large-sized instances, especially when the solution time is very critical.

An Iterative Linear Approximation Algorithm for a Unified Model of Traffic Assignment and Line Planning in Railway Networks (통행배정-노선계획 통합 모형을 위한 선형 근사화 알고리듬 개발)

  • Park, Bum Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.140-147
    • /
    • 2014
  • Line planning is an important step to determine the optimal frequencies of trains given the forecasted demand for each train type. The main input data for line planning is the leg traffic demand which can be derived using suitable traffic assignment models. However most assignment models require a line plan, in other words, train frequencies or headways, so that inconsistent results just by the procedural approach to find an optimal line plan after determining leg traffic can be avoided. This paper suggests a unified model that can consider the traffic assignment and line planning, simultaneously. We further provide an elaborated approximation algorithm and, finally, provide experimental results determined for the Korean railway network.

Rules of Three Untrained Workers' Assignment Optimization in Reset Limited-Cycled Model with Multiple Periods

  • Song, Peiya;Kong, Xianda;Yamamoto, Hisashi;Sun, Jing;Matsui, Masayuki
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.372-378
    • /
    • 2015
  • In labor-intensive enterprise, such as garment factory, assembly line is widely used as a manufacturing process for reducing costs and production time. However, for the sake of the various working capacity of worker, idle or delay may happen and influence the rear processes. If these unforeseeable delay happened continuously, it may influence the whole manufacturing process and a model, which is called limited-cycle model with multiple periods (LCMwMP), is assumed to evaluate the influence risk. In order to minimize the risk, the assignment of the workers is focused on. In this paper, we deal with an assembly line as LCMwMP model when two kinds of workers exist, whose efficiency is assumed to two different groups. We consider an optimization problem for finding an assignment of workers to the line that minimizes total expected risk, which is exchanged to expected cost by reset model of LCMwMP. First, reset model as a simple model of LCMwMP is introduced. Then, some hypotheses of the rules of the optimal worker assignment are proposed and some numerical experiments are researched assuming the processing time as Erlang distribution. Finally, the other rules on other certain conditions are discussed.

Polynomial Time Algorithm for Worker Assignment Problem (작업자 배정 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.159-164
    • /
    • 2022
  • The linear assignment problem (LAP) and linear bottleneck assignment problem (LBAP) has been unknown the algorithm to solve the optimal solution within polynomial-time. These problems are classified by NP-hard. Therefore, we can be apply metaheuristic methods or linear programming (LP) software package or Hungarian algorithm (HA) with O(m4) computational complexity. This paper suggests polynomial time algorithm with O(mn)=O(m2),m=n time complexity to LAP and LBAP. The select-delete method is simply applied to LAP, and the delete-select method is used to LBAP. For the experimental data without the unique algorithm can be apply to whole data, the proposed algorithm can be obtain the optimal solutions for whole data.

OPTIMUM ALLOCATION OF PORT LABOR GANGS IN CASE OF MULTIPLE SHIPS (항만하역노동력의 최적배분에 관한 연구 (II) 선박군의 경우)

  • 이철영;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.3
    • /
    • pp.37-44
    • /
    • 1989
  • Recently recognize the labor productivity of port physical distribution system in the port and shipping areas, Much Efforts for evaluating this productivity has been made continuously. BUt still there is little study, so far, on a systematic research for the management of port labor gangs, and even those were mainly depended on a rule of thumb. Especially the object of this study is to introduce the method of optimal allocation and assignment for the labor gangs per pier unit in the multiple ships berthed at an arbitary pier or port. In case the multiple ships have a homogeneous cargoes or do not have sufficient labor gangs to be assigned. The problem of optimal allocation and assignment of the labor gangs to be i) formalized with multi-state decision process in form of difference equation as the pattern which converted the independent multiple ships into a single ship with the intra-multiple ships, and ii) the optimal size of labor gangs could be obtained through the simple mathematical method instead of complicated dynamic programming, and iii) In case of shortage of labor gangs available the evaluation function considering the labor gangs available and total shift times was introduced, and iv) the optimal allocation and assignment of labor gangs was dealt at the point of minimizing the summation of the total shift times and at the point of minimizing the total cost charged for the extra waiting time except PHI time during port times for the multiple ships combinations.

  • PDF