• Title/Summary/Keyword: Optimal Algorithm

Search Result 6,866, Processing Time 0.034 seconds

Analysis of Leaf Node Ranking Methods for Spatial Event Prediction (의사결정트리에서 공간사건 예측을 위한 리프노드 등급 결정 방법 분석)

  • Yeon, Young-Kwang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Spatial events are predictable using data mining classification algorithms. Decision trees have been used as one of representative classification algorithms. And they were normally used in the classification tasks that have label class values. However since using rule ranking methods, spatial prediction have been applied in the spatial prediction problems. This paper compared rule ranking methods for the spatial prediction application using a decision tree. For the comparison experiment, C4.5 decision tree algorithm, and rule ranking methods such as Laplace, M-estimate and m-branch were implemented. As a spatial prediction case study, landslide which is one of representative spatial event occurs in the natural environment was applied. Among the rule ranking methods, in the results of accuracy evaluation, m-branch showed the better accuracy than other methods. However in case of m-brach and M-estimate required additional time-consuming procedure for searching optimal parameter values. Thus according to the application areas, the methods can be selectively used. The spatial prediction using a decision tree can be used not only for spatial predictions, but also for causal analysis in the specific event occurrence location.

Optimal Design of Network-on-Chip Communication Sturcture (Network-on-Chip에서의 최적 통신구조 설계)

  • Yoon, Joo-Hyeong;Hwang, Young-Si;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.80-88
    • /
    • 2007
  • High adaptability and scalability are two critical issues in implementing a very complex system in a single chip. To obtain high adaptability and scalability, novel system design methodology known as communication-based system design has gained large attention from SoC designers. NoC (Network-on-Chip) is such an on-chip communication-based design approach for the next generation SoC design. To provide high adaptability and scalability, NoCs employ network interfaces and routers as their main communication structures and transmit and receive packetized data over such structures. However, data packetization, and routing overhead in terms of run time and area may cost too much compared with conventional SoC communication structure. Therefore, in this research, we propose a novel methodology which automatically generates a hybrid communication structure. In this work, we map traditional pin-to-pin wiring structure for frequent and timing critical communication, and map flexible and scalable structure for infrequent, or highly variable communication patterns. Even though, we simplify the communication structure significantly through our algorithm the connectivity or the scalability of the communication modules are almost maintained as the original NoC design. Using this method, we could improve the timing performance by 49.19%, and the area taken by the communication structure has been reduced by 24.03%.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration (소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구)

  • An, Dong-Uk;Leem, Choon Seong
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 2019
  • Recently, the crime that utilizes the digital platform is continuously increasing. About 140,000 cases occurred in 2015 and about 150,000 cases occurred in 2016. Therefore, it is considered that there is a limit handling those online crimes by old-fashioned investigation techniques. Investigators' manual online search and cognitive investigation methods those are broadly used today are not enough to proactively cope with rapid changing civil crimes. In addition, the characteristics of the content that is posted to unspecified users of social media makes investigations more difficult. This study suggests the site-based collection and the Open API among the content web collection methods considering the characteristics of the online media where the infringement crimes occur. Since illegal content is published and deleted quickly, and new words and alterations are generated quickly and variously, it is difficult to recognize them quickly by dictionary-based morphological analysis registered manually. In order to solve this problem, we propose a tokenizing method in the existing dictionary-based morphological analysis through WPM (Word Piece Model), which is a data preprocessing method for quick recognizing and responding to illegal contents posting online infringement crimes. In the analysis of data, the optimal precision is verified through the Vote-based ensemble method by utilizing a classification learning model based on supervised learning for the investigation of illegal contents. This study utilizes a sorting algorithm model centering on illegal multilevel business cases to proactively recognize crimes invading the public economy, and presents an empirical study to effectively deal with social data collection and content investigation.

  • PDF

A Study on Reliability Based Design Criteria for the Steel Highway Bridge (강도로교(鋼道路橋)의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(硏究))

  • Cho, Hyo Nam;Kim, Woo Seok;Lee, Cheung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 1985
  • This study proposes a reliability based design criteria for the steel bridge (H-beam, plate-girder and composite-beam), which is most common type of steel bridge, and also proposes the theoretical bases of nominal safety factors as well as load and rasistance factors based on the reliability theory. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM (Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Lind-Hasofer's approximate and an approximate Log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the safety pravisions of the current steel bridge design code. Galambo's theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistences by LRFD Format and SGST Format, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. It may be concluded that the proposed LRFD reliability based design provisions for the steel highway bridge give more rational design than the current standard code for steel highway bridge.

  • PDF

Iris Feature Extraction using Independent Component Analysis (독립 성분 분석 방법을 이용한 홍채 특징 추출)

  • 노승인;배광혁;박강령;김재희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.20-30
    • /
    • 2003
  • In a conventional method based on quadrature 2D Gator wavelets to extract iris features, the iris recognition is performed by a 256-byte iris code, which is computed by applying the Gabor wavelets to a given area of the iris. However, there is a code redundancy because the iris code is generated by basis functions without considering the characteristics of the iris texture. Therefore, the size of the iris code is increased unnecessarily. In this paper, we propose a new feature extraction algorithm based on the ICA (Independent Component Analysis) for a compact iris code. We implemented the ICA to generate optimal basis functions which could represent iris signals efficiently. In practice the coefficients of the ICA expansions are used as feature vectors. Then iris feature vectors are encoded into the iris code for storing and comparing an individual's iris patterns. Additionally, we introduce two methods to enhance the recognition performance of the ICA. The first is to reorganize the ICA bases and the second is to use a different ICA bases set. Experimental results show that our proposed method has a similar EER (Equal Error Rate) as a conventional method based on the Gator wavelets, and the iris code size of our proposed methods is four times smaller than that of the Gabor wavelets.

A Variant of Improved Robust Fuzzy PCA (잡음 민감성이 개선된 변형 퍼지 주성분 분석 기법)

  • Kim, Seong-Hoon;Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.25-31
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction. Although PCA has been applied in many areas successfully, it is sensitive to outliers due to the use of sum-square-error. Several variants of PCA have been proposed to resolve the noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA2, however, still can fall into a local optimum due to equal initial membership values for all data points. Another reason comes from the fact that RF-PCA2 is based on sum-square-error although fuzzy memberships are incorporated. In this paper, a variant of RF-PCA2 called RF-PCA3 is proposed. The proposed algorithm is based on the objective function of RF-PCA2. RF-PCA3 augments RF-PCA2 with the objective function of PCA and initial membership calculation using data distribution, which make RF-PCA3 to have more chance to converge on a better solution than that of RF-PCA2. RF-PCA3 outperforms RF-PCA2, which is demonstrated by experimental results.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Review on the Three-Dimensional Inversion of Magnetotelluric Date (MT 자료의 3차원 역산 개관)

  • Kim Hee Joon;Nam Myung Jin;Han Nuree;Choi Jihyang;Lee Tae Jong;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • This article reviews recent developments in three-dimensional (3-D) magntotelluric (MT) imaging. The inversion of MT data is fundamentally ill-posed, and therefore the resultant solution is non-unique. A regularizing scheme must be involved to reduce the non-uniqueness while retaining certain a priori information in the solution. The standard approach to nonlinear inversion in geophysis has been the Gauss-Newton method, which solves a sequence of linearized inverse problems. When running to convergence, the algorithm minimizes an objective function over the space of models and in the sense produces an optimal solution of the inverse problem. The general usefulness of iterative, linearized inversion algorithms, however is greatly limited in 3-D MT applications by the requirement of computing the Jacobian(partial derivative, sensitivity) matrix of the forward problem. The difficulty may be relaxed using conjugate gradients(CG) methods. A linear CG technique is used to solve each step of Gauss-Newton iterations incompletely, while the method of nonlinear CG is applied directly to the minimization of the objective function. These CG techniques replace computation of jacobian matrix and solution of a large linear system with computations equivalent to only three forward problems per inversion iteration. Consequently, the algorithms are efficient in computational speed and memory requirement, making 3-D inversion feasible.