• Title/Summary/Keyword: Optimal Algorithm

Search Result 6,866, Processing Time 0.039 seconds

Swell Correction of Shallow Marine Seismic Reflection Data Using Genetic Algorithms

  • park, Sung-Hoon;Kong, Young-Sae;Kim, Hee-Joon;Lee, Byung-Gul
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.163-170
    • /
    • 1997
  • Some CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source and streamer, which are towed under rough sea surface during the data acquisition. The observed time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the swell correction. A new class of global optimization methods known as GA has recently been developed in the field of Artificial Intelligence and has a resemblance with the genetic evolution of biological systems. The basic idea in using GA as an optimization method is to represent a population of possible solutions or models in a chromosome-type encoding and manipulate these encoded models through simulated reproduction, crossover and mutation. GA parameters used in this paper are as follows: population size Q=40, probability of multiple-point crossover P$_c$=0.6, linear relationship of mutation probability P$_m$ from 0.002 to 0.004, and gray code representation are adopted. The number of the model participating in tournament selection (nt) is 3, and the number of expected copies desired for the best population member in the scaling of fitness is 1.5. With above parameters, an optimization run was iterated for 101 generations. The combination of above parameters are found to be optimal for the convergence of the algorithm. The resulting reflection events in every NMO-corrected CMP gather show good alignment and enhanced quality stack section.

  • PDF

Development of a High-Resolution Electrocardiography for the Detection of Late Potentials (Late Potential의 검출을 위한 고해상도 심전계의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.449-458
    • /
    • 1996
  • Most of the conventional electrocardiowaphs foil to detect signals other than P-QRS-T due to the limited SNR and bandwidth. High-resolution electrocardiography(HRECG) provides better SNR and wider bandwidth for the detection of micro-potentials with higher frequency components such as vontricular late potentials(LP). We have developed a HRECG using uncorrected XYZ lead for the detection of LPs. The overall gain of the amplifier is 4000 and the bandwidth is 0.5-300Hz without using 60Hz notch filter. Three 16-bit A/D converters sample X, Y, and Z signals simultaneously with a sampling frequency of 2000Hz. Sampled data are transmitted to a PC via a DMA-controlled, optically-coupled serial communication channel. In order to further reduce the noise, we implemented a signal averaging algorithm that averaged many instances of aligned beats. The beat alignment was carried out through the use of a template matching technique that finds a location maximizing cross-correlation with a given beat tem- plate. Beat alignment error was reduced to $\pm$0.25ms. FIR high-pass filter with cut-off frequency of 40Hz was applied to remove the low frequency components of the averaged X, Y, and Z signals. QRS onset and end point were determined from the vector magnitude of the sigrlaIL and some parameters needed to detect the existence of LP were estimated. The entire system was designed for the easy application of the future research topics including the optimal lead system, filter design, new parameter extraction, etc. In the developed HRECG, without signal averaging, the noise level was less than 5$\mu$V$_rms RTI$. With signal averaging of at least 100 beats, the noise level was reduced to 0.5$\mu$V$_rms RTI$, which is low enough to detect LPs. The developed HRECG will provide a new advanced functionality to interpretive ECG analyzers.

  • PDF

Reinforcement Learning with Clustering for Function Approximation and Rule Extraction (함수근사와 규칙추출을 위한 클러스터링을 이용한 강화학습)

  • 이영아;홍석미;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1054-1061
    • /
    • 2003
  • Q-Learning, a representative algorithm of reinforcement learning, experiences repeatedly until estimation values about all state-action pairs of state space converge and achieve optimal policies. When the state space is high dimensional or continuous, complex reinforcement learning tasks involve very large state space and suffer from storing all individual state values in a single table. We introduce Q-Map that is new function approximation method to get classified policies. As an agent learns on-line, Q-Map groups states of similar situations and adapts to new experiences repeatedly. State-action pairs necessary for fine control are treated in the form of rule. As a result of experiment in maze environment and mountain car problem, we can achieve classified knowledge and extract easily rules from Q-Map

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.

Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems (퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법)

  • Son, Chang-S.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.360-366
    • /
    • 2008
  • The initial fuzzy partitions in fuzzy rule-based classification systems are determined by considering the domain region of each attribute with the given data, and the optimal classification boundaries within the fuzzy partitions can be discovered by tuning their parameters using various learning processes such as neural network, genetic algorithm, and so on. In this paper, we propose a selection method for fuzzy partition based on statistical information to maximize the performance of pattern classification without learning processes where statistical information is used to extract the uncertainty regions (i.e., the regions which the classification boundaries in pattern classification problems are determined) in each input attribute from the numerical data. Moreover the methods for extracting the candidate rules which are associated with the partition intervals generated by statistical information and for minimizing the coupling problem between the candidate rules are additionally discussed. In order to show the effectiveness of the proposed method, we compared the classification accuracy of the proposed with those of conventional methods on the IRIS and New Thyroid Cancer data. From experimental results, we can confirm the fact that the proposed method only considering statistical information of the numerical patterns provides equal to or better classification accuracy than that of the conventional methods.

Symmetrical model based SLAM : M-SLAM (대칭모형 기반 SLAM : M-SLAM)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.463-468
    • /
    • 2010
  • The mobile robot which accomplishes a work in explored region does not know location information of surroundings. Traditionally, simultaneous localization and mapping(SLAM) algorithms solve the localization and mapping problem in explored regions. Among the several SLAM algorithms, the EKF (Extended Kalman Filter) based SLAM is the scheme most widely used. The EKF is the optimal sensor fusion method which has been used for a long time. The odometeric error caused by an encoder can be compensated by an EKF, which fuses different types of sensor data with weights proportional to the uncertainty of each sensor. In many cases the EKF based SLAM requires artificially installed features, which causes difficulty in actual implementation. Moreover, the computational complexity involved in an EKF increases as the number of features increases. And SLAM is a weak point of long operation time. Therefore, this paper presents a symmetrical model based SLAM algorithm(called M-SLAM).

H.264 to MPEG-2 Transcoding considering Distance of Motion Vectors (움직임벡터의 거리를 고려한 H.264 to MPEG-2 Transcoding)

  • Son, Nam-Rye;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.454-463
    • /
    • 2010
  • After the efficiency of H.264 video compression has been announced, it replaced MPEG-2 standard in several applications. So transcoding methods of MPEG-2 to H.264 have been studying because there are variety devices and contents followed by MPEG-2. Although H.264 supported various service such as IPTV, DMB, digital broadcasting etc, but users using MPEG-2 devices cannot accessible to them. This paper propose H.264 to MPEG-2 transcoding for users of MPEG-2 devices without displacement H.264. The proposed method predicted a motion vector for MPEG-2 encoder after it extracted from motion vectors of variable blocks in H.264 to improve processing time. Also it predicted a optimal motion vector using modified boundary matching algorithm after grasped a special character for boundary and background of object. The experimental results from proposed method show a considerable reduction in processing time, as much as 68% averagely, with a small objective quality reduction in PSNR.

Development of an Engine Simulator for Optimal Control System Implementation of a Gas Turbine Engine (가스터빈엔진 최적 제어시스템 구현을 위한 엔진 시뮬레이터 개발)

  • Cha, Young-Bum;Koo, Bon-Min;Song, Do-Ho;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • In advanced countries, a gas turbine engine is developed to use in aircraft, vessels, and target weapons. Our nation also passed the level of producing engine components and now, we are developing small-sized gas turbine engine. The most important point of the gas turbine engine, the engine control technique, is evaded by the advanced nations. This document contains the research about the development of the gas turbine engine simulator. The simulator presented in this document has a mathematical engine model based on a capacity data of the gas turbine engine to advance the engine simulator. Through this process, it eases the development of the gas turbine engine control algorithm and helps to check the engine controller function. In this simulator, the engine sensor signal conversion board is designed, so the engine model shows like a real sensor signal during the simulation. Also, this paper contrasts the actual engine test with the simulation results to verify the performance.

Bit Split Algorithm for Applying the Multilevel Modulation of Iterative codes (반복부호의 멀티레벨 변조방식 적용을 위한 비트분리 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Nam-Soo;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1654-1665
    • /
    • 2008
  • This paper presents bit splitting methods to apply multilevel modulation to iterative codes such as turbo code, low density parity check code and turbo product code. Log-likelihood ratio method splits multilevel symbols to soft decision symbols using the received in-phase and quadrature component based on Gaussian approximation. However it is too complicate to calculate and to implement hardware due to exponential and logarithm calculation. Therefore this paper presents Euclidean, MAX, sector and center focusing method to reduce the high complexity of LLR method. Also, this paper proposes optimal soft symbol split method for three kind of iterative codes. Futhermore, 16-APSK modulator method with double ring structure for applying DVB-S2 system and 16-QAM modulator method with lattice structure for T-DMB system are also analyzed.

Image Recognition by Fuzzy Logic and Genetic Algorithms (퍼지로직과 유전 알고리즘을 이용한 영상 인식)

  • Ryoo, Sang-Jin;Na, Chul-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.969-976
    • /
    • 2007
  • A fuzzy classifier which needs various analyses of features using genetic algorithms is proposed. The fuzzy classifier has a simple structure, which contains a classification part based on fuzzy logic theory and a rule generation part using genetic algorithms. The rule generation part determines optimal fuzzy membership functions and inclusion or exclusion of each feature in fuzzy classification rules. We analyzed recognition rate of a specific object, then added finer features repetitively, if necessary, to the object which has large misclassification rate. And we introduce repetitive analyses method for the minimum size of string and population, and for the improvement of recognition rates. This classifier is applied to two examples of the recognition of iris data and the recognition of Thyroid Gland cancer cells. The fuzzy classifier proposed in this paper has recognition rates of 98.67% for iris data and 98.25% for Thyroid Gland cancer cells.