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Some.CMP gathers acquired from shallow marine seismic reflection survey in offshore Korea
do not show the hyperbolic trend of moveout. It originated from so-called swell effect of source
and streamer, which are towed under rough sea surface during the data acquisition. The observed
time deviations of NMO-corrected traces can be entirely ascribed to the swell effect. To correct
these time deviations, a residual statics is introduced using Genetic Algorithms (GA) into the
swell correction. A new class of global optimization methods known as GA has recently been de-
veloped in the field of Artificial Intelligence and has a resemblance with the genetic evolution of
biological systems. The basic idea in using GA as an optimization method is to represent a po-
pulation of possible solutions or models in a chromosome-type encoding and manipulate these
encoded models through simulated reproduction, crossover and mutation. GA parameters used in
this paper are as follows: population size @=40, probability of multiple-point crossover P.=0.6,
linear relationship of mutation probability P, from 0.002 to 0.004, and gray code representation
are adopted. The number of the model participating in tournament selection (nt) is 3, and the
number of expected copies desired for the best population member in the scaling of fitness is 1.5.
With above parameters, an optimization run was iterated for 101 generations. The combination
of above parameters are found to be optimal for the convergence of the algorithm. The resulting
reflection events in every NMO-corrected CMP gather show good alignment and enhanced qual-

ity stack section.

INTRODUCTION

When reflection seismic data are acquired on land,
sources and receivers are generally placed on or
near the surface. Eventual processing and inter-
pretation of seismic data assume that they Wwere
collected on level terrain. If this is not the case,
rough corrections for variations in elevation are
made early in processing. These constant (static)
time shifts are called field statics because the
corrections are based on a surveyor's field mea-
surement. However the field statics corrections are
only an approximation; the unconsolidated, near-
surface weathering layer can exhibit substantial
variations in seismic velocity that also cause static
timing differences. Thus the application of field
statics never leaves the seismic data completely free
of static anomalies. These static anomalies are due
to unaccounted variations in the low velocity layer,
and the secondary procedures to correct them are

called residual statics.

Because of homogeneous velocity distribution in
the water layer, the residual statics corrections are
rarely applied to marine seismic reflection data.
However not all cases would be true. Fig. 1 shows
some selected CMP gathers acquired from shallow
marine seismic reflection survey in offshore south-
eastern Korea at Feb. 22, 1993. Note that the trend
of gradual increase in the traveltime of reflected
waves toward far channel is disturbed. It originated
from so-called swell effect of source and streamer,
which are towed under rough sea state during the
data acquisition. It is impractical to measure exact
depth variations of source and streamer in a shallow
seismic cruise. Thus the method of field statics for
land data can not be applied to marine data. As an
alternative, however, the idea and method of resi-
dual statics for land data can be introduced into the
swell correction.

The residual statics corrections use various statis-
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Fig. 1. Some selected CMP gathers acquired in offshore
southeastern Korea.
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tical techniques which enhance the quality of the
stacked traces by correctly aligning the reflection
events. In the present case, a trace with certain
statics information is utilized only in a single CMP
gather. The problem to be solved, therefore, belongs
to the field of combinatorial minimization rather
than multiparameter function optimization. To solve
the problem of combinatorial minimization for the
swell correction, we have adopted a new meth-
odology, Genetic Algorithms (GA).

Recently a new class of methods, to solve non-
linear optimization problems, has generated consid-
erable interest in the field of Artificial Intelligence.
This method, known as GA, is able to solve highly
non-linear and non-local optimization problems and
belongs to the class of global optimization tech-
niques, which includes Monte Carlo and Simulated
Annealing (SA) (Holland, 1992; Sambridge and Dri-
jkoningen, 1992; Gallagher and Sambridge, 1994).
Unlike local techniques, GA avoids all use of
curvature information on the objective function.
This means that it does not require any derivative
information and therefore one can use any type of
misfit function equally well. Most iterative methods
work with a single model and find an improvement
by perturbing it in some fashion. GA, however,
works with a group of models simultaneously and
uses stochastic processes to guide the search for an
optimal solution. Both GA and SA are modeled on
natural optimization systems. GA has an analogy
with biological evolution; SA uses an analogy with
thermodynamics. This evolution leads to an effi-

cient exchange of information between all models
met with, and allows the algorithm to rapidly assim-
ilate and exploit the information gained to find
better data fitting models.

We first describe the basic GA in the context of a
general optimization problem and append some
variations on the basic GA. Finally, the method is
applied to field data in order to correct the swell
effect as shown in Fig. 1.

GENETIC ALGORITHMS

Many geophysical optimization problems are non-
linear and result in irregular objective functions.
Consequently, local methods can depend strongly
on starting models, are prone to entrapment in local
minima, and can often become unstable. In addition,
the calculation of derivative information can be-
come difficult and costly. Global methods avoid
nearly all the limitations of local methods and are
therefore more attractive for problems which are not
too labor intensive in forward modeling. However,
the nature of random searching such as the Monte
Carlo method for near-optimal solutions involves a
large degree of potentially wasteful computation
through sampling unfavorable regions of model
space. This usually means that a large number of
models must be sampled and so the Monte Carlo
method becomes prohibitively slow for large-scale
problems and in such cases local methods are com-
monly considered the only viable approach (Sam-
bridge and Drijkoningen, 1992).

The process of randomly exploring relatively
large regions of model space is in stark contrast to
local methods, which exploit the information gained
through the sampling of only a few models and their
partial derivatives to reduce the data misfit. A trade-
off exists therefore between robust exploration of
the model space and efficient exploitation of the
information provided from this sampling. A general
optimization method ideally should combine both
of these desirable characteristics. This end is achiev-
ed by a new class of methods such as GA.

A global optimization method known as GA has
recently been developed in the field of Artificial
Intelligence. Like the Monte Carlo method, it is
completely non-linear, uses random processes and
requires no derivative information, yet it has poten-
tial for significant increases in efficiency over the
random walk strategy. GA is related to Simulated
Annealing (SA) (Kirkpatrik et al., 1983) in that they
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are both stochastic search techniques, employing
probabilistic mechanisms to solve complex opti-
mization problems with multiple minima. SA uses
an analogy with physical annealing in thermody-
namic systems, whereas GA has a resemblance with
the genetic evolution of biological systems (Sam-
bridge and Drijkoningen, 1992).

As related by Davis (1991), the features of evolu-
tion intrigued John Holland about 20 years ago.
Holland believed that computer algorithm simulat-
ing evolution could be developed to evolve solu-
tions to complex problems (Holland, 1992). It is
generally accepted that evolution occurs by natural
selection so that, within a given environment, more
successful organisms survive and propagate,
whereas the less well adapted decline. We could
regard evolution as an effectively self-optimizing
process in that the evolving system does not know a
priority that constitutes a successful organism. Fur-
thermore, the current population of organisms has
no memory of what has gone before (Gallagher and
Sambridge, 1994).

The complex mechanisms of evolution are not
particularly well understood but some general charac-
teristics emerge. First, evolutionary changes occur
at a molecular (or chromosome) level and the com-
bination of these changes leads to macroscale
evolutionary characteristics with which most of us
are familiar (Gallagher and Sambridge, 1994). The
second relevant characteristic of evolution is that
changes in chromosomes and genotypes occur dur-
ing reproduction and these changes are facilitated
through the relatively simple processes of crossover
and mutation. Reproduction generates offspring and
crossover allows the chromosome structure of
parent organisms to be modified by the exchange
and recombination of parts of each parent structure.
The crossover allows offspring to have a combina-
tion of the parents' characteristics and the offspring
also may develop some different features depending
on how chromosome structures are recombined.
Mutation is a random process that also provides the
opportunity to introduce new characteristics unre-
lated to the parents. In the general scheme of
evolution, mutation is generally regarded as secon-
dary to crossover. In part, this is because mutation
occurs relatively infrequently but, more importantly,
it is a less efficient optimizing process because it
fails to exploit the information contained in the
parent structures which contribute to successful or-
ganisms (Gallagher and Sambridge, 1994).

BASICS OF GA

Binary-code representation

A key aspect of GA is the representation of
complex model by simple encoding. The encoding,
initially considered by Holland (1975), is the repre-
sentation of a model by binary code (Fig. 2). When
we consider a binary coding for a series of models,
the patterns of 1s and Os in the individual binary
strings represent parameters of the corresponding
model. Thus the first step in GA is to represent a
model using a binary code. Once coded, a finite
population of models is generated at random and the
next three operators act on them in sequence.

Reproduction

This stage selects an interim population with Q
models by way of some stochastic selection process.
Because the aim is to propagate the better or fitter
models, those with higher values of the fitness func-
tion should have a higher probability of proceeding to
the next generation. The intuitive measure of this
probability then is the value of the fitness function
itself or, if necessary, a scaled fitness value, that will
be discussed later. One of the simplest procedures to
select models to pass into the interim population is
known as roulette wheel selection (Fig. 3). The
probability of a particular model being selected is
determined by its relative contribution to the total or
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xi = ith model parameter
x™™ = minimum value of the ith model parameter
Adxi = resolution of the ith model parameter

Fig. 2. A binary mode] parameter coding scheme. It is il-

lustrated for the ith model parameter, x;, with range x™" to
x* and resolution Ax; (after Stoffa and Sen, 1991).
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Fig. 3. Roulette wheel selection. Each model in the cur-
rent population gets a portion of a roulette wheel ac-
cording to the model's relative fitness. We select parents
by spinning the wheel once for each parents (after Smith
et al., 1992).

summed fitness of the population.

Crossover

The next step is the creation of a “child” model
from the selected parents. This step is in some sense
the inner magic of GA because it is mainly here that
searching extends into new regions of model space.
Crossover, often called recombination, between two
models paired or mated via the selection process is
carried out with a specified probability, P. The
simplest type of crossover, called one-point cross-
over (Fig. 4), selects a single crossover site bet-
ween strings (Sen and Stoffa, 1992). After a cross-
over point is chosen randomly from the string of
coded model parameters, each child is construc-
ted by taking the first portion of its string from one
parent and the second portion from the other.

Mutation

Finally mutation is possible based on a mutation
probability P,, which involves a random change of
a bit within the string. Mutation acts to randomly

Parent

1 00 00 1 11 00

1 1 1 1 1 1 00 11
Fig. 4. One-point crossover. Each model is coded as a
five-bit binary string. The two left models are the parents
(and are already present in the population) and the two
right models are the offspring produced by the crossover.

Offspring

perturb a randomly chosen element in an occasional
(randomly selected) child for the purpose of adding
diversity to the population. In the absence of muta-
tion, no child could ever acquire a chromosome
gene value which was not already present in the
population. After the three steps are completed, a
new population of models is produced which may
be used as input to the next generation.

VARIATIONS ON THE BASIC GA

There are a large number of possible encodings
and these can be developed for the most appropriate
representation of the problem or in response to
desirable behavior of the operators on the encoded
models. For example, the mutation operator is
generally desired to provide a local perturbation, yet
in the simple binary encoding it is equally likely
that a high-order bit (i.e., a large power of 2) and a
low-order bit are flipped in parity. Obviously,
flipping a low-order bit to the encoded model is a
local perturbation to the decoded model, but the
same is not applied to high-order bit. Gray coding
provides one solution to this problem and in this
mutation (i.e., flipping 1 bit) changes the decoded
model by 1 (Forrest, 1993). Gray codes have the
property that incrementing or decrementing any
number by 1 is always a one-bit change (Fig. 5).

In the roulette wheel selection, the probability of
a particular model being selected is proportional to
its relative contribution to the total fitness of the
population. However, random selection may cause
to pick out the worst model and may fail to select
the best model. Tournament selection provides one
solution to this problem. This method is based on
relative rank rather than the absolute value of fitness.
Some models are selected at random from the cur-
rent population of Q models and the highest fitness
model proceeds into the interim population. This
process is repeated until the interim population also

Decimal  Binary Gray Decimal  Binary Gray
0 0000 0000 8 1000 1100
1 0001 0001 9 1001 1101
2 0010 0011 10 1010 1111
3 0011 0010 11 1011 1110
4 0100 0110 12 1100 1010
5 0101 0111 13 1101 1011
6 0110 0101 14 1110 1001
7 0111 0100 15 1111 1000

Fig. 5. Comparison of Binary-coded and Gray-coded In-
tegers.
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has QO models. The selection force depends on the
number of the model competing in selection (nf)
and generally 2 or 3 of nt are favorable.

Goldberg (1989) describes a stretching of the ob-
jective function to either deemphasize major dif-
ferences, as the run matures, or accentuate minor
differences, at the start or interim of the run, among
the objective functions in the current population. In
both cases, linear scaling of the fitness function can
help to solve these problems (Fig. 6). Let us define
the raw fitness f and the scaled fitness f'. Linear
scaling requires a linear relationship between f' and
f as follows:

f'=af + b

The coefficients @ and b may be chosen in a
number of ways; however, in all cases we want the
average scaled fitness f',,, to be equal to the average
raw fitness f,,, because subsequent use of the selec-
tion procedure will insure that each average popula-
tion member contributes one expected offspring to
the next generation. To control the number of
offspring given to the population member with the
maximum raw fitness, we choose the other scaling
relationship to obtain a scaled maximum fitness, f',.=
Cour * fupy Where C_,, is the number of expected
copies desired for the best population member. For
typical small populations (Q=50 to 100), C,,=1.2 to
2 has been used successfully.

Binary codes for each model parameter result in a
long string of binary numbers. A crossover site is
then selected somewhere within the long srting.
Stoffa and Sen (1991) used “multiple-point cross-
over’ and found that the performance of their
algorithm was slightly improved by choosing a
crossover site for each model parameter within the
string. This is intuitively appealing for refining each

aug

favg

SCALED FITNESS

Fomin

0 Imin  fayg fmax
RAW FITNESS

Fig. 6. Linear scaling of fitness (after Goldberg, 1989).

parameter to generate a new model. In the present
case it was used instead of the single crossover.

So far, we have treated both crossover and
mutation as a single bundle. However, we do not
have to not only run both operators together but
also keep their probabilities constant during an opti-
mization run. Instead, a linear relationship between
the value in the first generation and that in the last
generation may be favorable. Each favorable part
consisting of optimal solution is scattered over the
initialized population and then assembles progres-
sively to form optimal solution by crossover. When
the population converges small model space, the
effect of crossover becomes diminished accordingly.
To search better model space than the current space,
higher mutation probability is needed. Therefore it
is favorable to increase mutation probability as
progression of an optimization run (Kim, 1995).

OPTIMIZATION PROBLEM

Residual statics corrections are not usually ap-
plied to marine seismic reflection data, because
source and streamer are forced to locate at constant
depth and the velocities of the water layer sur-
rounding them change little with depth. The CMP
gathers acquired under the above general condition
show that normal moveout (NMO), the difference
between the two-way time #(x) at a given offset x
and the two-way zero-offset time #(0), increases
with offset according to the relationship

2
X
Atyago = £(0) 1+(—v t(O)J —1
NMO )

so moveout is hyperbolic and is given by
x2

2
VMo

t2(x) =12(0) +

where v,,, is normal moveout velocity (Yilmaz,
1987). Thus the reflection events in each NMO-
corrected CMP gather show a good alignment to
result in the best quality stack of signal.

In certain cases, however, residual statics cor-
rections have produced dramatic improvements in
marine seismic data. Areas with irregular water-
bottom topography in shallow water (less than 25
m), and areas with rapidly varying velocity in the
sediments beneath the water bottom are places
where statics corrections have been successful (Yil-
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Fig. 7. Map showing seismic profile line.

maz, 1987). Furthermore, when source and streamer
fluctuate during the entire survey, residual statics
corrections are needed.

Fig. 1 shows some selected CMP gathers ac-
quired from shallow marine seismic reflection survey
in offshore southeastern Korea in Feb. 22, 1993 (see
Fig. 7 for the location). Seismic source is an airgun
of 10 in’, and the receiver is an analog streamer of 6
channels wih channel spacing of 5 m. The distance
between source and the nearest channel is 14.7 m.
One shot per one second and 2.5 m riding per one
shot makes 600% CMP stacking. The recording sys-
tem is capable of recording 2,500 samples divided
among a recording length ranging from 0 s to 0.5 s,
thus the sampling rate is 0.2 ms. In data processing,
1,000 samples picked out every other sample from
0.1 s to 0.5 s are utilized, and thus the sampling rate
is 0.4 ms. From Fig. 1, notice the deviation of the
moveout from hyperbolic trends on some CMP
gathers. This is because source and streamer are
located at shallow depth, and are towed under rough
sea surface, and move up and down during the
entire survey (swell effect). Measuring exact varia-
tion in depth of source and streamer is nearly
impossible. Thus the method as field statics correc-
tions for land data can not be applied to this marine
data. As an alternative, residual statics corrections
for land data are introduced into the swell correction.

The conventional model for obtaining residual
statics solutions (Wiggins et al., 1976; Taner et al.,
1974) expresses the observed static time deviations
of NMO- corrected traces as a sum of the unknown
surface-consistent time shifts and the component
due to residual NMO. The surface-consistent time
shifts in land data are due to near-surface velocity

anomalies. In marine survey, to the contrary, source
and streamer are surrounded by the water layer and
seismic waves ftravel through it with the same
velocity. Thus the time distortions of NMO-cor-
rected traces are not caused by velocity anomalies.
Instead, the variation in depth of source and stream-
er makes traveltime deviated. Even though major
cause for time deviation in both land and offshore
data is different, we do in the end correct the time
deviation rather than elevation or depth. Therefore
the introduction of the residual statics corrections
into our marine data is not absurd, and the static
time deviations of NMO-corrected traces can be
expressed only as surface-consistent parts. That is,
the observed time deviations of NMO-corrected
traces can be entirely ascribed to the swell effect.
Continuity between the reflectors obtained by the
swell correction in a single CMP gather and those
obtained by the swell correction in adjoining CMP
gathers is not clear, and thus the reduction of the
reflectors obtained by the swell correction to the ref-
lectors with genuine traveltime is difficult. To over-
come this, the data in the nearest channel are fil-
tered by a moving average method to get the trend of
topography, and then are fixed in all CMP gath-
ers. Thus the time shift value producing the best stack
quality can be considered as the deviation by swell.

OPTIMIZATION RUN

The shot gathers were rearranged into CMP
gathers. There were 1195 CMP gathers, and each of
them consisted of 6 traces. Then NMO corrections
were applied to these gathers. Because of short
offset, short spread length and small number of fold,
we failed to get the velocity spectrum. As an alter-
native, the velocity information of subsurface report-
ed from nearby refraction survey (Lee et al., 1991)
was used for NMO corrections. Some selected
NMO-corrected CMP gathers without any applica-
tion of statics for 0.1 s to 0.26 s are shown in Fig. 8.
Two data windows for GA experiments were used.
In the first experiment, a 0.116 s-0.134 s time win-
dow of data corresponding to 46 samples was used
(large window). In the second, a time window of 11
samples wide was used, which covers the maximum
amplitude point of the near channel (water bottom
window) at its center. The entire data set is scaled to
an RMS amplitude of 1000. The optimization func-
tion was set to be the crosscorrelation sum between
the data in the nearest channel and the data in the
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Fig. 8. NMO-corrected CMP gathers.

other channels of water bottom window. The stack
section without the swell correction is shown in Fig. 9.

In the GA run, each population is initialized with
a completely randomized population, except for one
individual set to the input image. This individual
has shift values of zero for each trace. The trace
shifts of the other individuals are allowed to vary in
the range of +7 and -7 (2.8 ms) samples. Thus the
search the GA performs is initially biased toward a
region of model space containing the input stack.
The conceptual reason for this biased start is to take
advantage of the information contained within the
uncorrected stack. In essence, why does it start with
nothing when some information is already available?
The GA parameters for optimizing statics are as fol-
lows: population size Q=40, probability of multiple-
point crossover P,=0.6, linear relationship of muta-
tion probability P, from 0.002 to 0.004, and gray
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Fig. 9. Stack section before swell correction.

code representation are adopted. The number of the
model participating in tournament selection (n?) is 3,
and C_,, in the scaling of fitness is 1.5. With above
parameters, an optimization run was iterated for 101 -
generations.

Performance versus generation is shown in Fig. 10
for the CMP 145. The other CMP gathers also dis-
play performance curves similar to Fig. 10. Well-
performing schemata become established more
easily, and then passed into subsequent generation,
leading to a rapid increase in the overall perfor-
mance. Fig. 11 shows swell-corrected CMP gathers
using the best performing individual from the above
run. NMO-corrected CMP gathers are shown in Fig.
12. Stack section in Fig. 13 shows a significant im-
provement over the Fig. 9.
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Fig. 10. Performance curve for the CMP No. 145.
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Fig. 11. Swell-corrected CMP gathers.

~0.26



170 Sung Hoon Park, Young Sae Kong, Hee Joon Kim and Byung-Gul Lee

CMP Gather Number

10 9 8 7 6 5 4 3 2 1
|||I||||||o.10

TIME IN SECONDS

Fig. 12. NMO-corrected CMP gathers of Fig. 11.
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Fig. 13. Stack section after swell correction.

CONCLUSIONS

The above results point out several interesting
aspects of the GA when applied to the shallow
marine reflection data, the quality of the obtained
section has been degenerated by swell. Even though
the data set used in this study needed only very
small statics shifts inside the range +6 samples (+
2.4 ms) and the problem is considered to be com-
binatorial minimization rather than multiparameter
function optimization, GA run using a biased start
with crosscorrelation sum function leads the GA to
locate reasonably high-performing regions of the
model space.

By using the uncorrected CMP gather as a
member of the initial population, GA can be carried
out with some success. Biased start makes the best

use of the information contained in the input CMP
gather. As this information is enhanced, the volume
of model space searched is expanded to include a
wider range of statics value.
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