• Title/Summary/Keyword: Optics alignment

Search Result 147, Processing Time 0.017 seconds

Analysis of Axial Mis-alignment After Wearing of Toric Soft Contact Lenses (토릭소프트콘택트렌즈의 착용 후 축 정렬 상태의 변화 분석)

  • Kim, Sang-Yoeb;Lee, Dong Yeol;Lee, Sun-Haeng;Kim, Kun-Kyu;Song, Sop;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.213-217
    • /
    • 2010
  • Purpose: To emphasize the necessity of post-fitting by follow-up test, the mis-alignment was analyzed after initial wearing of toric soft contact lenses (TSCL). Methods: After trial contact lenses were worn to 87 eyes with myopic astigmatism for 1 week, we observed the alignment of axis mark on trial contact lenses using slit lamp and corrected the rotated axis by method of LARS. After final fitting, rotation ratio, rotation degree and rotation position were analyzed compared to initial prescription divided to amount of cylinderical and spherical powers. Results: Rotation ratio of TSCL's axis was increased as increment of both cylinderical powers and (-)spherical powers. An average of rotation degree was $10^{\circ}{\sim}13^{\circ}$ which was not related to amount of their powers. Rotation position of TSCL's axis was more to temporal than to nasal. Conclusions: Because mis-alignment of axis after TSCL wearing induce the poor sight, adjustment of axial alignment as a result of follow-up must be performed.

The Difference of Tear Break-Up Time by the Fitting States of Soft Contact Lens in Normal and Dry Eyes (정상안과 건성안에서 소프트렌즈 피팅 상태에 따른 비침입성 눈물막 파괴 시간의 차이)

  • Jung, Da I;Lee, Heum Sook;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.339-346
    • /
    • 2010
  • Purpose: The study was performed to compare the difference of non-invasive tear break-up time (NIBUT) with alignment or steep fitting of soft contact lens in normal and dry eyes. Methods: Total 40 eyes (aged 20~30 years) were classified to the normal (n=20) or dry eye group (n=20) by the diagnosis methods for dry eyes and worn soft contact lens (polymacon material) with alignment or steep fitting. NIBUTs of lens wearers were separately measured at the points of before wearing, immediately after wearing and after stabilization of tear film. Results: With alignment fitting, averaged NIBUT in the dry eye group after stabilization of tear film was not significantly different from that of the normal eye group. However, averaged NIBUTs in the normal and dry eyes had significant difference when measured immediately after lens wearing. However, the number of eyes having NIBUT less than 4.0 second was 30% higher compared to the number of normal eyes with steep fitting when measured immediately after wearing. Some shorten NIBUT in dry eyes with steep fitting was also shown after stabilization of tear film. Conclusions: These results suggest that wearing soft contact lens in dry eyes differently affect tear film compared to normal eyes. Thus, dry eyes need more advertent fitting for contact lens wearing because of unstable tear film.

A Study on configuration of a laser resonator with high alignment stability (높은 정렬 안정성을 갖는 레이저 공진기 구성에 관한 연구)

  • 차혁진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.4
    • /
    • pp.279-288
    • /
    • 2000
  • The variations of output energy due to tilt output coupler for different types of pulsed Nd:YAG laser resonators were compared by measuring FWHM (full width at half maximum) which means the width of angle displacement where maximum output energy decreases to half value. We proposed a new configuration of pulsed solid-state laser resonator which had high FWHM for tilting of output coupler and which was little sensitive for tilting of rear optics. We proved that our laser resonator had high alignment stability using ABeD ray matrix method because the ray matrix of such a resonator corresponded to unit matrix. atrix.

  • PDF

A study for null lens design of autostigmatic type and the limitation of measurement accuracy for ultra precision manufacturing of large aspherical surface (대형 비구면의 초정밀 가공을 위한 자동무수차점 방식의 널 렌즈 설계 및 측정 정밀도의 한계에 관한 연구)

  • Kim, Kil-Seon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.71-78
    • /
    • 2005
  • A null lens system of autostigmatic type, consisting of two mirrors, is designed for testing a large aspherical mirror. The system is theoretically analyzed to determine the limitation of measurement accuracy according to the manufacturing and alignment errors. We confirmed that irregularity of the null lens surface is the principal factor among tolerances in limiting measurement accuracy. Consequently, we can predict that measurement accuracy will be from 5λ/100 to 4λ/1000 according to the amount of this irregularity. That is, we can present the limitation of possible measurement accuracy with actual alignment and manufacturing errors.

Optical Design of A Compact Imaging Spectrometer for STSAT3

  • Lee, Jun-Ho;Jang, Tae-Seong;Yang, Ho-Soon;Rhee, Seung-Wu
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.262-268
    • /
    • 2008
  • A compact imaging spectrometer (COMIS) for use in the STSAT3 microsatellite is currently under development. It is scheduled to be launched into a low Sun-synchronous Earth orbit (${\sim}700km$) by the end of 2010. COMIS was inspired by the success of CHRIS, which is a small hyperspectral imager developed for the ESA microsatellite PROBA. COMIS is designed to achieve nearly equivalent imaging capabilities of CHRIS in a smaller (65 mm diameter and 4.3 kg mass) and mechanically superior (in terms of alignment and robustness) package. Its main operational goal will be the imaging of Earth's surface and atmosphere with ground sampling distances of ${\sim}30m$ at the $18{\sim}62$ spectral bands ($4.0{\sim}1.05{\mu}m$). This imaging will be used for environmental monitoring, such as the in-land water quality monitoring of Paldang Lake, which is located next to Seoul, South Korea. The optics of COMIS consists of two parts: imaging telescope and dispersing relay optics. The imaging telescope, which operates at an f-ratio of 4.6, forms an image (of Earth's surface or atmosphere) onto an intermediate image plane. The dispersion relay optics disperses the image and relay it onto a CCD plane. All COMIS lenses and mirrors are spherical and are made from used silica exclusively. In addition, the optics is designed such that the optical axis of the dispersed image is parallel to the optical axis of the telescope. Previous efforts focused on manufacturing ease, alignment, assembly, testing, and improved robustness in space environments.

Measurement of Primary-mirror Vertex Coordinates for a Space Camera by Using a Computer-generated Hologram and a Theodolite (컴퓨터 제작 홀로그램과 데오도라이트를 이용한 인공위성 카메라 주 반사경의 정점 좌표 측정)

  • Kang, Hye-Eun;Song, Jae-Bong;Yang, Ho-soon;Kihm, Hagyong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.146-152
    • /
    • 2017
  • Alignment of the mirrors composing a space telescope is an important process for obtaining high optical resolution and performance of the camera system. The alignment of mirrors using cube mirrors requires a relative coordinate mapping between the mirror and the cube mirror before optical-system integration. Therefore, to align the spacecraft camera mirrors, the relative coordinates of the vertex of each mirror and the corresponding cube mirror must be accurately measured. This paper proposes a new method for finding the vertex position of a primary mirror, by using an optical fiber and alignment segments of a computer-generated hologram (CGH). The measurement system is composed of an optical testing interferometer and a multimode optical fiber. We used two theodolites to measure the relative coordinates of the optical fiber located at the mirror vertex with respect to the cube mirror, and achieved a measurement precision of better than $25{\mu}m$.

The Comparison of Lens Movement by the Fitting States of Soft Contact Lenses in Normal and Dry Eyes (정상안과 건성안에서 피팅상태에 따른 각막에서의 소프트렌즈 움직임 비교)

  • Jung, Da I;Lim, Shin Kyu;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Purpose: The study was performed to compare the differences in lens rotation, lens movement by blinking and lens centration with alignment or steep fitting of soft contact lens in normal and dry eyes. Methods: Total 40 eyes (aged 20~30 years) were classified into the normal (n=20) or dry eye group (n=20) by the diagnosis methods for dry eyes and worn soft contact lens (polymacon material) with alignment fitting or steep fitting. Lens rotation, lens movement by blinking and lens centration were separately measured immediately after lens wearing and after stabilization of tear film and compared by fitting states of soft contact lenses. Results: With steep fitting of soft contact lens in dry eyes, averaged lens rotation immediately after lens wearing was not significantly different from that of the normal eye group with alignment fitting however, lens rotation after stabilization in dry eyes was significantly larger than that in normal eyes. Any significant difference in lens movement by blinking was not shown in normal eyes. However, lens movement by blinking in dry eyes was increased with steep fitting. The range of lens centration on cornea in normal eyes with alignment fitting was more vertically distributed. On the other hand, the range of lens centration on cornea in dry eyes with alignment fitting was more horizontally distributed. Lens centration was shown to be changed by stabilization of tear film. That is, lens centrations were somewhat vertically widespread immediately after lens wearing and restrictively distributed in horizontal direction, respectively, with steep fitting in dry eyes. Conclusions: These results suggested that lens movements and centration in dry eyes were different from those of normal eyes. Especially, those differences between normal and dry eyes were much bigger with steep fitting of soft contact lenses. Thus, those differences should be considered for the comfortable and safe fitting of soft contact lens in dry eyes.

Development of Optical System for ARGO-M

  • Nah, Jakyoung;Jang, Jung-Guen;Jang, Bi-Ho;Han, In-Woo;Han, Jeong-Yeol;Park, Kwijong;Lim, Hyung-Chul;Yu, Sung-Yeol;Park, Eunseo;Seo, Yoon-Kyung;Moon, Il-Kwon;Choi, Byung-Kyu;Na, Eunjoo;Nam, Uk-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • ARGO-M is a satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute with the consideration of mobility and daytime and nighttime satellite observation. The ARGO-M optical system consists of 40 cm receiving telescope, 10 cm transmitting telescope, and detecting optics. For the development of ARGO-M optical system, the structural analysis was performed with regard to the optics and optomechanics design and the optical components. To ensure the optical performance, the quality was tested at the level of parts using the laser interferometer and ultra-high-precision measuring instruments. The assembly and alignment of ARGO-M optical system were conducted at an auto-collimation facility. As the transmission and reception are separated in the ARGO-M optical system, the pointing alignment between the transmitting telescope and receiving telescope is critical for precise target pointing. Thus, the alignment using the ground target and the radiant point observation of transmitting laser beam was carried out, and the lines of sight for the two telescopes were aligned within the required pointing precision. This paper describes the design, structural analysis, manufacture and assembly of parts, and entire process related with the alignment for the ARGO-M optical system.

Sensitivity analysis of 20:1 zoom infrared optical system with zernike polynomial coefficients (제르니케(Zernike)계수를 이용한 20:1 줌 적외선 광학계 민감도 분석)

  • 최세철;김현숙;김창우;김연수;이국환;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.535-544
    • /
    • 2003
  • The sensitivity analysis of a middle wave infrared optical system with 20: 1 zoom ratio is performed to analyze manufacturing and alignment tolerances, and to establish the alignment logic and the focus control strategy. The characteristics of the sensitivities of Zernike coefficients are investigated to all mechanical displacements and several zoom positions using Code-V Macro. From this result, the tolerances of manufacturing and alignment of the optical system are derived and the effective alignment logic is established. Futhermore, an effective focus control strategy is established to make the system simple and compact.