• Title/Summary/Keyword: Optical waveguide

Search Result 747, Processing Time 0.025 seconds

Single-photon Detection at 1.5 ㎛ Telecommunication Wavelengths Using a Frequency up-conversion Detector (주파수 상향변환 검출기를 이용한 1.5 ㎛ 통신파장대역의 단일광자 측정)

  • Kim, Heon-Oh;Youn, Chun-Ju;Cho, Seok-Beom;Kim, Yong-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.223-229
    • /
    • 2011
  • We present a low jitter frequency up-conversion detector based on quasi-phase matched sum frequency generation in a periodically poled $LiNbO_3$ waveguide for efficient single-photon detection at 1.5 ${\mu}m$ telecommunication wavelengths. The maximum detection efficiency and the noise count rate using the pump power of 300 mW and the pump wavelength of 974 nm are about 7% and 480 kHz, respectively. We also characterize the timing jitter of the frequency up-conversion detector by analyzing the time distribution of the detection outputs for photons generated through a picosecond pump pulsed spontaneous parametric downconversion. The minimum timing jitter was measured to be about 39.1 ps. Coincidence measurement with a narrow time window for pulsed up-conversion photons can eliminate the unwanted noise counts and maximize signal to noise ratio.

Effects of $N_2O$/$SiH_4$Flow Ratio and RF Power on Properties of $SiO_2$Thick Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 증착된 $SiO_2$후막 특성에서 $N_2O$/$SiH_4$Flow Ratio와 RF Power가 미치는 영향)

  • 조성민;김용탁;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1037-1041
    • /
    • 2001
  • Silicon diosixde thick film using silica optical waveguide cladding was fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) method, at a low temperature (32$0^{\circ}C$) and from (SiH$_4$+$N_2$O) gas mixtures. The effects of deposition parameters on properties of SiO$_2$thick films were investigated by variation of $N_2$O/SiH$_4$flow ratio and RF power. As the $N_2$O/SiH$_4$flow ratio decreased, deposition rate increased from 2.9${\mu}{\textrm}{m}$/h to maximum 10.1${\mu}{\textrm}{m}$/h. As the RF power increased from 60 W to 120 W, deposition rate increased (5.2~6.7 ${\mu}{\textrm}{m}$/h) and refractive index approached at thermally grown silicon dioxide (n=1.46).

  • PDF

Light Coupling and Propagation Between a Fiber and a Dielectric Slab with a Conductor Cladding (측면 연마된 광섬유와 완전도체면 아래의 유전체 사이에서의 결합과 전파특성의 해석)

  • Kwon, Kwang-Hee;Yoon, Ki-Hong;Kim, Jeong-Hoon;Song, Jae-Won;Park, Euy-Dong;Son, Seok-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.70-79
    • /
    • 2003
  • A theoretical presentation of evanescent coupling is offered with respect to the refractive indexes between a side polished optical fiber and an infinitely planar waveguide with a conductor cladding(PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with the perfect conductor(PEC) on one side. The behavior of the distributed coupler is examined using a coupled mode model, which takes account of the two dimensions of the waveguide configuration. The coupling and propagation of light were found to depend on both the relationship between the refractive index values of each structure and the configuration of the side polished fiber used in the PWGCC. The spreading of light in the unconfined direction of the PWGCC is described in terms of a simple geometrical interpretation of the synchromization condition that is in agreement with a previous investigation of the problem based on the coupled-mode theory(CMT). The power of the light propagation in the fiber decreased exponentially along the fiber axis as it was transferred to the PWGCC.

A Study on the Development of leisure boat's Hull Stress Monitoring System using AWG (광섬유센서를 이용한 레저선박의 선체구조모니터링시스템 개발에 관한 연구(I))

  • Kang, Nam-Seon;Kim, Hyen-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.269-274
    • /
    • 2011
  • The purpose of hull stress monitoring system(HSMS) is to lead hull structure to be safer at lower cost. We proposed a hull stress monitoring system for leisure boats using fiber-optic bragg grating(FBG) strain sensor. Fiber optic sensors are well suited for structure monitoring system, due to their ability to withstand harsh environments, immunity to electromagnetic interference, and reduce cabling installation cost when employing wavelength multiplexing. This paper presents an overview of current research and design of hull stress monitoring system for leisure boats.

Fabrication and Modulation Characteristic of TE-selective P-I-i-I-N GaAs/Al0.35Ga0.65As waveguide phase modulator (TE 모드의 위상변화만을 일으키는 P-I-i-I-N GaAs/Al0.35Ga0.65As 도파로 위상변조기의 제작 및 변조 특성)

  • Kim, Sun-Pil;Lee, Sang-Sun;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.184-188
    • /
    • 2003
  • We fabricated a P-I-i-I-N $GaAs/Al_{0.35}Ga_{0.65}As$waveguide phase modulator with significant phase shift for the TE mode but negligible for the TM mode. We selected the P-I-i-I-N structure to cause a phase shift about the TM mode. The wavelength of $\lambda=1.55$\mu\textrm{m}$ was measured for both the TE and TM modes, respectively. As a result, the measured phase shift efficiency ($\Delta\phi$) by using the Fabry-Perot resonance method was $7.9^{\circ}/V.mm$ for TE-polarized light. Also, no modulation was observed for TM-polarized light.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

940-nm 350-mW Transverse Single-mode Laser Diode with AlGaAs/InGaAs GRIN-SCH and Asymmetric Structure

  • Kwak, Jeonggeun;Park, Jongkeun;Park, Jeonghyun;Baek, Kijong;Choi, Ansik;Kim, Taekyung
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.583-589
    • /
    • 2019
  • We report experimental results on 940-nm 350-mW AlGaAs/InGaAs transverse single-mode laser diodes (LDs) adopting graded-index separate confinement heterostructures (GRIN-SCH) and p,n-clad asymmetric structures, with improved temperature and small-divergence beam characteristics under high-output-power operation, for a three-dimensional (3D) motion-recognition sensor. The GRIN-SCH design provides good carrier confinement and prevents current leakage by adding a grading layer between cladding and waveguide layers. The asymmetric design, which differs in refractive-index distribution of p-n cladding layers, reduces the divergence angle at high-power operation and widens the transverse mode distribution to decrease the power density around emission facets. At an optical power of 350 mW under continuous-wave (CW) operation, Gaussian narrow far-field patterns (FFP) are measured with the full width at half maximum vertical divergence angle to be 18 degrees. A threshold current (Ith) of 65 mA, slope efficiency (SE) of 0.98 mW/mA, and operating current (Iop) of 400 mA are obtained at room temperature. Also, we could achieve catastrophic optical damage (COD) of 850 mW and long-term reliability of 60℃ with a TO-56 package.

A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement (전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구)

  • Jung, Hong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.15-22
    • /
    • 2011
  • Integrated-optic symmetric/asymmetric Mach-Zehnder interferometers at $1.3{\mu}m$ wavelength were studied as sensing part for electric-field measurement system. The devices were simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. A half-wave voltage of $V_{\pi}$=6.6V and modulation depth of 100% and 75% for a symmetric structure were measured for 200Hz and 1kHz electrical signal bandwidth, respectively. By the way, almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}$/2 intrinsic phase difference. Expected experimental measurements were observed for 1kHz electrical signal bandwidth.

WDM/TDM-Based Channel Allocation Methodology in Optical Network-on-Chip (광학 네트워크-온-칩에서 WDM/TDM 기반 채널 할당 기법)

  • Hong, Yu Min;Lee, Jae Hoon;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.40-48
    • /
    • 2015
  • An optical network-on-chip(ONoC) architecture is emerging as a new paradigm for solving on-chip communication bottleneck. Recent studies on ONoC have been focusing on supporting the parallel transmission and avoiding path collisions using wavelength division multiplexing(WDM). However, since the maximum number of wavelengths, which a single waveguide can accommodate is limited by crosstalk and insertion loss. Therefore previous WDM studies based on incrementing the number of different wavelengths according to the number of nodes would be infeasible due to the implementation complexity. To solve such problems, we combined time division multiplexing(TDM) and wavelength-routed ONoC, along with an optimized channel allocation algorithm, which can minimize the number of extra wavelength channels and latency caused by combining TDM scheme.

Refractometric Glucose Biosensor Incorporating a Vertically Coupled Microring Resonator in Polymeric Waveguides (수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서)

  • Kim, Gun-Duk;Son, Keun-Sik;Lee, Hak-Soon;Kim, Ki-Do;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • A refractometric glucose biosensor incorporating a vertically coupled microring resonator in polymers was proposed and realized. The ring was covered with a target analyte of glucose solution with a certain concentration, so that its effective refractive index could be altered and, as a result, the resonance wavelength of the sensor was shifted. Therefore the concentration of the glucose solution can be estimated by observing the shift in the resonance wavelength. Two schemes were exploited for enhancing the sensitivity of the sensor. First, the effective refractive index of the polymeric waveguide used for the resonator sensor was adjusted to approach that of the target analyte as best as possible. Second, the ring waveguide, which serves as a crucial sensing part, was appropriately over-etched to enlarge its contact area with the analyte. The proposed resonator sensor was designed with the beam propagation method. The refractive indices of the core and cladding polymer involved were 1.430 and 1.375 respectively, leading to the waveguide's effective refractive index of ${\sim}1.390$, which is faiirly close to that of the glucose solution of ${\sim}1.333$. The prepared ring resonator with the $400-{\mu}m$ radius exhibited the free spectral range of 0.66 nm, the bandwidth of 0.15 nm, and the quality factor of 10,000. For the sensor operating at 1,550 nm wavelength, the achieved sensitivity was as great as 0.28 pm/(mg/dL), which is equivalent to 200 nm/RIU.