A Study on Electrooptic $Ti:LiNbO_3$ Mach-Zehnder integrated-optic interferometers for Electric-Field Measurement

전계측정용 전기광학 $Ti:LiNbO_3$ Mach-Zehnder 집적광학 간섭기에 관한 연구

  • Jung, Hong-Sik (Dept. of Electronic & Electrical Eng., Hongik University)
  • 정홍식 (홍익대학교 전자전기공학과)
  • Received : 2011.08.04
  • Published : 2011.12.25

Abstract

Integrated-optic symmetric/asymmetric Mach-Zehnder interferometers at $1.3{\mu}m$ wavelength were studied as sensing part for electric-field measurement system. The devices were simulated based on the BPM software and fabricated utilizing Ti-diffused $LiNbO_3$ channel optical waveguides and lumped-type electrodes. A half-wave voltage of $V_{\pi}$=6.6V and modulation depth of 100% and 75% for a symmetric structure were measured for 200Hz and 1kHz electrical signal bandwidth, respectively. By the way, almost half-maximum power transmission was observed for asymmetric interferometers with ${\pi}$/2 intrinsic phase difference. Expected experimental measurements were observed for 1kHz electrical signal bandwidth.

전계 측정시스템에서 센서 감지부로 $1.3{\mu}m$ 파장에서 동작하는 대칭/비대칭 구조의 Mach-Zehnder 간섭기를 구현하였다. BPM 전산모사를 통해서 소자를 설계하였고, $LiNbO_3$에 Ti 확산방법으로 구현된 채널 광도파로에 집중전극구조를 배열하여 집적광학 칩을 제작하였다. 대칭 구조로 위상차가 없도록 제작된 소자는 전기신호 200Hz, 1kHZ 구형 파형에서 반 파장전압 $V_{\pi}$=6.6V, 변조 깊이 100%, 75%로 각각 측정되었다. 한편 ${\pi}$/2 위상차를 갖도록 설계된 비대칭 구조에서는 DC 0V에서 측정된 출력 광세기가 최고치에 약 1//2에 해당됨을 확인하였으며, 1kHz 전기 신호를 인가해서 ${\pi}$/2 위상차 때문에 나타나는 전기적 현상들을 확인하였다.

Keywords

References

  1. Serigne, et al, "Isotropic Pattern of an Optical Electromagnetic Field Probe Based Upon Mach-Zehnder Interferometer," IEEE Trans. on Electromagnetic Compatibility, Vol. 39, No. 1, pp. 61-63, Feb. 1997. https://doi.org/10.1109/15.554696
  2. Y. J. Rao, "Eletro-optic electric field sensor based on periodically poled $LiNbO_3$," Electronics Lett., Vol. 35, No. 7, pp. 596-597, Apr. 1999. https://doi.org/10.1049/el:19990374
  3. Lionel Duvillaret, et al, "Electro-optic sensors for electric field measurements. I. Theoretical comparision among different modulation techniques," J. Opt. Soc. Am. B, Vol. 19, No. 11, pp. 2692-2703, Nov. 2002. https://doi.org/10.1364/JOSAB.19.002692
  4. C. H. Bulmer and W. K. Burns, "Linear Interferometric Modulators in Ti:$LiNbO_3$," J. Lightwave Technol., Vol. LT-2, No. 4, pp. 512-521, Aug. 1984.
  5. Tsung-Hsin Lee, et al, "Electromagnetic Field Sensor Using Mach-Zehnder Waveguide Modulator," Microwave and Optical Technol. Lett., Vol. 48, No. 9, pp. 1897-1899, Sep. 2006. https://doi.org/10.1002/mop.21776
  6. Tsung-Hsin Lee, et al, "Integrated $LiNbO_3$ Electrooptical Electromagnetic Field Sensor," Microwave and Optical Technol. Lett. Vol. 49, No. 9, pp. 2312-2314, Sep. 2007. https://doi.org/10.1002/mop.22715
  7. Hiroshi Nishihara, et al, "Optical Integrated Circuits": pp. 286-289, McGraw-Hill, 1985.
  8. Gerd Keiser, Optical Fiber Communication, 4th edition, pp. 222-245, McGraw-Hill.
  9. David H. Naghski, et al, "An integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields," J. Lightwave Technol., Vol. 12, No. 6, pp. 1092-1098, June 1994. https://doi.org/10.1109/50.296204
  10. OptiBPM 9.0 (Waveguide Optics Design Software, Optiwave.