• Title/Summary/Keyword: Optical tracking system

Search Result 300, Processing Time 0.026 seconds

Occluded Object Motion Tracking Method based on Combination of 3D Reconstruction and Optical Flow Estimation (3차원 재구성과 추정된 옵티컬 플로우 기반 가려진 객체 움직임 추적방법)

  • Park, Jun-Heong;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • A mirror neuron is a neuron fires both when an animal acts and when the animal observes the same action performed by another. We propose a method of 3D reconstruction for occluded object motion tracking like Mirror Neuron System to fire in hidden condition. For modeling system that intention recognition through fire effect like Mirror Neuron System, we calculate depth information using stereo image from a stereo camera and reconstruct three dimension data. Movement direction of object is estimated by optical flow with three-dimensional image data created by three dimension reconstruction. For three dimension reconstruction that enables tracing occluded part, first, picture data was get by stereo camera. Result of optical flow is made be robust to noise by the kalman filter estimation algorithm. Image data is saved as history from reconstructed three dimension image through motion tracking of object. When whole or some part of object is disappeared form stereo camera by other objects, it is restored to bring image date form history of saved past image and track motion of object.

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U.;Han, Jae-Ho;Liu, Xuan;Zhang, Kang
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Space Debris Tracking Coverage Analysis of Spinning Disk for Optical Path Switch of Geochang Laser Tracking System (거창 레이저 추적 시스템의 광 경로 전환을 위한 회전 디스크의 우주쓰레기 레이저 추적 성능 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Yu, Sung-Yeol;Choi, Man-Soo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.391-399
    • /
    • 2020
  • KASI (Korea Astronomy and Space Science Institute) has been developing the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for scientific research and national space missions. The space debris laser tracking system provides the distance to space debris without a laser retro-reflector array by using a high power pulse laser, which employs a spinning disk to change the optical path between the transmit and receive beams. The spinning disk causes the collision band which is unable to reflect the returned signal to a detector and then has an effect on the tracking coverage of space debris. This study proposed the mathematical model for tracking coverage by taking into account the various specifications of spinning disk such as disk size, spinning velocity and collision rate between the disk and hole. In addition, the spinning disk specifications were analyzed in terms of tracking coverage and collision band based on the mathematical model to investigate tracking requirements of the Geochang laser tracking system.

An Accurate Sun Tracking System (태양광 집적을 위한 태양위치 추적장치)

  • 백현규;곽만섭;현웅근
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.737-741
    • /
    • 2001
  • An illumination system by using sun light is optimally designed. The developing system consists of main controler for sun tracking, Cds sensor module, and light translation system based on optical fiber. A sun tracking algorithm is designed in such away that the illumination system stand with straight angle to the direction of sun within $\pm$2$^{\circ}$as permissible tolerance. To show the validity of the developed system, several experiments will be illustrated.

  • PDF

Multi-Object Tracking Based on Keypoints Using Homography in Mobile Environments (모바일 환경 Homography를 이용한 특징점 기반 다중 객체 추적)

  • Han, Woo ri;Kim, Young-Seop;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • This paper proposes an object tracking system based on keypoints using homography in mobile environments. The proposed system is based on markerless tracking, and there are four modules which are recognition, tracking, detecting and learning module. Recognition module detects and identifies an object to be matched on current frame correspond to the database using LSH through SURF, and then this module generates a standard object information. Tracking module tracks an object using homography information that generate by being matched on the learned object keypoints to the current object keypoints. Then update the window included the object for defining object's pose. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. The experimental results show that the proposed system is able to recognize and track objects with updating object's pose for the use of mobile platform.

A digital filter design applied to the manual tracking system to predict future position (차량의 미래위치 추정을 위한 수동추적 시스템의 디지털 필터 설계)

  • 박용운;강윤식;김상원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1332-1335
    • /
    • 1996
  • It is very important to predict the future position for the heavy vehicle with evasive maneuvering. In this paper, we considered for the manual image tracking system. The vehicle images are received from gyro stabilized mirror system, pass through the optical lens, processed, and displayed on the TV monitor. The operator try to lay the reticle to the center of vehicle image. When the vehicle is moving, the mirror platform (actually the line of sight) should follow the vehicle and the angular rate information is picked up from the mirror stabilized system. This rate signal should be used to predict the future vehicle position. The problem is that the visual system of the human operator is in the closed loop system. The rate signals are disturbed by the operator. In addition, there are some non linearities concerned with the control handle bar and the servo control system. The proposed Kalman filter, combined with some modifications for operator disturbance rejection, improved the predication of the future vehicle position when compared with the conventional passive filter used.

  • PDF

Small/Fast Moving Target Tracking base on Correlation Filter in Clutter Environment (클러터 환경에서 correlation filter기반 소형 고속 이동 표적 추적 시스템)

  • Jung, Young-Giu;Sun, Sun-Gu;Lee, Eui-Hyuk;Joo, Yong-Kwan;Kim, Taewan;Lee, Young-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.93-98
    • /
    • 2019
  • On today, optical system are the next generation weapon systems being studied in many countries, starting from USA. One of the most important technologies in optical system is a high-speed automatic target tracking system that can continuously track high-speed moving small targets. This paper designs an automatic target tracking system based on a correlated trekker that is robust against rapid shape changes for fast moving targets and small targets at a distance. The proposed system showed about 98% success rate in response to the targets that are under a complex background such as drone, ranger, etc.