Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.1.001

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing  

Kang, Jin-U. (Department of Electrical and Computer Engineering, Johns Hopkins University)
Han, Jae-Ho (Department of Electrical and Computer Engineering, Johns Hopkins University)
Liu, Xuan (Department of Electrical and Computer Engineering, Johns Hopkins University)
Zhang, Kang (Department of Electrical and Computer Engineering, Johns Hopkins University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.1, 2010 , pp. 1-13 More about this Journal
Abstract
This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.
Keywords
Optical coherence tomography; Fiber optic sensor; Optical imaging;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997).   DOI   ScienceOn
2 M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999).   DOI   ScienceOn
3 E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992).   DOI
4 A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999).   DOI
5 J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003).   DOI   ScienceOn
6 J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).
7 J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).
8 B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)
9 Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004).   DOI   ScienceOn
10 R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002).   DOI   ScienceOn
11 B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).
12 K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003).   DOI
13 J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994).   DOI   ScienceOn
14 S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).
15 J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003).   DOI
16 S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000).   DOI   ScienceOn
17 A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997).   DOI
18 S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000).   DOI   ScienceOn
19 W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999).   DOI
20 Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002).   DOI
21 Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.
22 A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003).   DOI
23 M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).
24 U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005).   DOI   ScienceOn
25 R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.
26 P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004).   DOI
27 T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003).   DOI   ScienceOn
28 A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006).   DOI
29 K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009).   DOI
30 U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).   DOI   ScienceOn
31 X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008).   DOI
32 K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009).   DOI   ScienceOn
33 S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).
34 J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4.   DOI
35 I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001).   DOI
36 M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009).   DOI
37 V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).
38 D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003).   DOI   ScienceOn
39 D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005).   DOI   ScienceOn
40 C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008).   DOI   ScienceOn
41 http://omlc.ogi.edu/spectra/index.html.
42 K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).
43 X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008).   DOI
44 S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.
45 N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008).   DOI   ScienceOn
46 W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006).   DOI   ScienceOn
47 M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005).   DOI   ScienceOn
48 D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005).   DOI
49 X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008).   DOI
50 J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008).   DOI   ScienceOn
51 K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.
52 H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007).   DOI   ScienceOn
53 J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006).   DOI   ScienceOn
54 T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005).   DOI   ScienceOn
55 J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009).   DOI   ScienceOn
56 M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009).   DOI   ScienceOn
57 U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000).   DOI
58 W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006).   DOI
59 R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).
60 S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).
61 A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006).   DOI   ScienceOn
62 S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004).   DOI
63 S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998).   DOI
64 F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008).   DOI   ScienceOn
65 N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004).   DOI
66 G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007).   DOI
67 W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).