DOI QR코드

DOI QR Code

Common-path Optical Coherence Tomography for Biomedical Imaging and Sensing

  • Kang, Jin-U. (Department of Electrical and Computer Engineering, Johns Hopkins University) ;
  • Han, Jae-Ho (Department of Electrical and Computer Engineering, Johns Hopkins University) ;
  • Liu, Xuan (Department of Electrical and Computer Engineering, Johns Hopkins University) ;
  • Zhang, Kang (Department of Electrical and Computer Engineering, Johns Hopkins University)
  • Received : 2010.02.02
  • Accepted : 2010.03.09
  • Published : 2010.03.25

Abstract

This paper describes a development of a fiber optic common-path optical coherence tomography (OCT) based imaging and guided system that possess ability to reliably identify optically transparent targets that are on the micron scale; ability to maintain a precise and safe position from the target; ability to provide spectroscopic imaging; ability to imaging biological target in 3-D. The system is based on a high resolution fiber optic Common-Path OCT (CP-OCT) that can be integrated into various mini-probes and tools. The system is capable of obtaining >70K A-scan per second with a resolution better than $3\;{\mu}m$. We have demonstrated that the system is capable of one-dimensional real-time depth tracking, tool motion limiting and motion compensation, oxygen-saturation level imaging, and high resolution 3-D images for various biomedical applications.

Keywords

References

  1. S. Rizzo, F. Patelli, and D. R. Chow, Vitreo-retinal Surgery (Springer-Verlag Berlin Heidelberg, 2009).
  2. R. H. Taylor, A. Menciassi, G. Fichtinger, and P. Dario, Medical Robotics and Computer-Integrated Surgery (Springer Handbook of Robotics, Springer-Verlag Berlin Heidelberg, 2008).
  3. B. E. Bouma, Handbook of Optical Coherence Tomography (Informa HealthCare, USA, 2001).
  4. M. S. Jafri, R. Tang, and C.-M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85-89 (2009). https://doi.org/10.1016/j.jneumeth.2008.08.038
  5. A. Low, G. Tearney, B. Bouma, and I. Jang, “Technology insight: optical coherence tomography-current status and future development,” Nat. Clin. Pract. Cardiovasc. Med. 3, 154-162 (2006). https://doi.org/10.1038/ncpcardio0482
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency domain ranging,” Opt. Exp. 12, 2977-2998 (2004). https://doi.org/10.1364/OPEX.12.002977
  7. S. A. Boppart, M. E. Brezinski, C. Pitris, and J. G. Fujimoto, “Optical coherence tomography for neurosurgical imaging of human intracortical melanoma,” Neurosurgery 43, 834-841 (1998). https://doi.org/10.1097/00006123-199810000-00068
  8. F. Ikeda, T. Iida, and S. Kishi, “Resolution of retinoschisis after vitreous surgery in X-linked retinoschisis,” Ophthalmology 115, 718-722 (2008). https://doi.org/10.1016/j.ophtha.2007.05.047
  9. N. Iftimia, B. Bouma, J. Boer, B. Park, B. Cense, and G. Tearney, “Adaptive ranging for optical coherence tomography,” Opt. Exp. 12, 4025-4034 (2004). https://doi.org/10.1364/OPEX.12.004025
  10. G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, and J. Boer, “Three dimensional tracking for volumetric spectral-domain optical coherence tomography,” Opt. Exp. 15, 16808-16817 (2007). https://doi.org/10.1364/OE.15.016808
  11. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, USA, 2008).
  12. G. J. Tearny, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). https://doi.org/10.1126/science.276.5321.2037
  13. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999). https://doi.org/10.1364/OL.24.001221
  14. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Select. Topical Quantum Electron. 5, 1185-1192 (1999). https://doi.org/10.1109/2944.796345
  15. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151-153 (1992). https://doi.org/10.1364/OL.17.000151
  16. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999). https://doi.org/10.1364/OL.24.001484
  17. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nature Biotech. 21, 1361-1367 (2003). https://doi.org/10.1038/nbt892
  18. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Opthalmol. 112, 1584-1589 (1994).
  19. J. Bush, P. Davis, and M. A. Marcus, “All-fiber optic coherence domain interferometric techniques,” Proc. SPIE, Photonics East, 4204A-08 (2000).
  20. B. E. Bouma and G. J. Tearny, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, USA, 2002)
  21. Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, and L. V. Wang, “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Lett. 4, 1689-1692 (2004). https://doi.org/10.1021/nl049126a
  22. R. K. Wang and J. B. Elder, “Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointenstinal tissues,” Lasers Surg. Med. 30, 201-208 (2002). https://doi.org/10.1002/lsm.10013
  23. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546-1548 (2003). https://doi.org/10.1364/OL.28.001546
  24. K. Sokolov, J. Aaron, B. Hsu, D. Nida, A. Gillenwater, M. Follen, C. MacAulay, K. Adler-Storthz, B. Korgel, M. Descour, R. Pasqualini, W. Arap, W. Lam, and R. Richards-Kortum, “Optical systems for in vivo molecular imaging of cancer,” Technol. Cancer Res. Treat. 2, 491-504 (2003). https://doi.org/10.1177/153303460300200602
  25. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705-1720 (1994). https://doi.org/10.1088/0031-9155/39/10/013
  26. S. J. Kim and N. M. Bressler, “Optical coherence tomography and cataract surgery,” Curr. Opin. Ophthalmol. 20, 46-51 (2009).
  27. J. K. Barton, K. W. Gossage, W. Xu, J. Ranger-Moore, K. Saboda, C. A. Brooks, L. D. Duckett, S. J. Salache, J. A. Warneke, and D. S. Alberts, “Investigating sun-damaged skin and actinic keratosis with optical coherence tomography: a pilot study,” Technol. Cancer Res. Treat. 2, 525-535 (2003). https://doi.org/10.1177/153303460300200605
  28. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Soehendra, and N. Schrodern, “In vivo endoscopic optical coherence tomography of the human gastrointestinal tract-toward optical biopsy,” Endoscopy 32, 743-749 (2000). https://doi.org/10.1055/s-2000-7711
  29. S. Jackle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schroder, and N. Soehendra, “In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus,” Endoscopy 32, 750-755 (2000). https://doi.org/10.1055/s-2000-7705
  30. I. Hart, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001). https://doi.org/10.1364/OL.26.000608
  31. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “Highresolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27, 243-245 (2002). https://doi.org/10.1364/OL.27.000243
  32. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Exp. 1, 432-440 (1997). https://doi.org/10.1364/OE.1.000432
  33. Y. Chen, X. Li, M. Cobb, X. Liu, and R. Thariani, “Full dispersion compensation in real-time optical coherence tomography involving a phase/frequency modulator,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (San Francisco, California, May 2004), paper CThT76.
  34. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003). https://doi.org/10.1364/AO.42.006953
  35. M. J. Ju, S. Y. Ryu, J. Na, H. Y. Choi, and B. H. Lee, “Common-path optical frequency domain imaging system designed for identifying and grading pearls,” Proc. SPIE, Photonics West, 7556-39 (2010).
  36. R. Beddows, S. W. James, and R. P. Tatam, “Improved performance interferometer designs for optical coherence tomography,” in Proc. The 15th Optical Fiber Sensors Conference Technical Digest (Portland, OR, USA, 2002), pp. 527-530.
  37. P. Casaubieilh, H. D. Ford, and R. P. Tatam, “Optical fibre Fizeau-based OCT,” Proc. SPIE 5502, 338-341 (2004). https://doi.org/10.1117/12.566717
  38. X. Liu, X. Li, D.-H. Kim, I. Ilev, and J. U. Kang, “Fiberoptic Fourier-domain common-path OCT,” Chin. Opt. Lett. 6, 899-901 (2008). https://doi.org/10.3788/COL20080612.0899
  39. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Select. Topical Quantum Electron. 11, 799-805 (2005). https://doi.org/10.1109/JSTQE.2005.857380
  40. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, “Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon,” Opt. Exp. 14, 1878-1887 (2006). https://doi.org/10.1364/OE.14.001878
  41. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. A. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Exp. 17, 2375-2384 (2009). https://doi.org/10.1364/OE.17.002375
  42. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007). https://doi.org/10.1063/1.2804112
  43. X. Li, J.-H. Han, X. Liu, and J. U. Kang, “Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography,” Appl. Opt. 47, 4833-4840 (2008). https://doi.org/10.1364/AO.47.004833
  44. S. Vergnole, G. Lamouche, M. Dufour, and B. Gauthier, “Common path swept-source OCT interferometer with artifact removal,” Proc. SPIE 6847, 68472 (2008).
  45. J.-H. Han, I. K. Ilev, D.-H. Kim, C. G. Song, and J. U. Kang, “Investigation of gold-coated bare fiber probe for in situ intra-vitreous coherence domain optical imaging and sensing,” Appl. Phys. B : Lasers and Optics, DOI: 10.1007/s00340-010-3910-4.
  46. K. Zhang and J. U. Kang, “Self-adaptive common-path Fourier-domain optical coherence tomography with real-time surface recognition and feedback control,” in Proc. Conference on Lasers and Electro-Optics (CLEO) (Shanghai, China, 2009), paper JTuD59.
  47. K. Zhang, W. Wang, J. Han, and J. U. Kang, “Surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography,” IEEE Trans. Biomed. Eng. 56, 2318-2321 (2009). https://doi.org/10.1109/TBME.2009.2024077
  48. M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, J. Kang, and R. Taylor, “Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery,” Lecture Notes in Computer Science 5761, 108-115 (2009). https://doi.org/10.1007/978-3-642-04268-3_14
  49. V. Kamat, “Pulse oximetry,” Indian J. Anaesh. 46, 261-268 (2002).
  50. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-) hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28, 1436-1438 (2003). https://doi.org/10.1364/OL.28.001436
  51. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30, 1015-1017 (2005). https://doi.org/10.1364/OL.30.001015
  52. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33, 416-418 (2008). https://doi.org/10.1364/OL.33.000416
  53. http://omlc.ogi.edu/spectra/index.html.
  54. K. Briely-Sebo and A. Bjornerud “Accurate de-oxygenation of ex vivo whole blood using sodium Dithionite,” Proc. Intl. Sot. Mag. Reson. Med. 8. 2025 (2000).
  55. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111-113 (2000). https://doi.org/10.1364/OL.25.000111
  56. S. G. Yuen, P. M. Novotny, and R. D. Howe, “Quasiperiodic predictive filtering for robot-assisted beating heart surgery,” in Proc. International Conference on Robotics and Automation (ICRA) (Pasadena, California, USA, May 2008), pp. 3875-3880.
  57. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. D. Yang, “Electrostatic forwardviewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33, 657-659 (2008). https://doi.org/10.1364/OL.33.000657
  58. W. Jung, D. T. McCormick, J. Zhang, L. Wang, N. C. Tien, and Z. Chen, “Three-dimensional endoscopic optical coherence tomography by use of a two-axis microelectromechanical scanning mirror,” Appl. Phys. Lett. 88, 163901 (2006). https://doi.org/10.1063/1.2195092
  59. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C.-M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10, 051603 (2005). https://doi.org/10.1117/1.2116967
  60. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depthresolved microscopy,” Opt. Exp. 13, 1468-1476 (2005). https://doi.org/10.1364/OPEX.13.001468
  61. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanningless wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microscopy 229, 104-114 (2008). https://doi.org/10.1111/j.1365-2818.2007.01873.x
  62. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Exp. 16, 21598-21607 (2008). https://doi.org/10.1364/OE.16.021598
  63. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Exp. 14, 8675-8684 (2006). https://doi.org/10.1364/OE.14.008675
  64. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18, 2949-2957 (2007). https://doi.org/10.1088/0957-0233/18/9/027
  65. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourierdomain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31, 772-774 (2006). https://doi.org/10.1364/OL.31.000772
  66. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30, 1803-1805 (2005). https://doi.org/10.1364/OL.30.001803
  67. J.-H. Han, X. Liu, C. G. Song and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45, 1110-1112 (2009). https://doi.org/10.1049/el.2009.1627

Cited by

  1. Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.293
  2. Passive OCT probe head for 3D duct inspection vol.24, pp.9, 2013, https://doi.org/10.1088/0957-0233/24/9/094001
  3. Optical coherence tomography in biomedical research vol.400, pp.9, 2011, https://doi.org/10.1007/s00216-011-5052-x
  4. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography vol.39, pp.12, 2014, https://doi.org/10.1364/OL.39.003638
  5. Visible green upconversion luminescence of Li+/Er3+/Yb3+co-doped CaWO4phosphor and effects of Yb3+concentration vol.23, pp.3, 2013, https://doi.org/10.6111/JKCGCT.2013.23.3.142
  6. Accurate real-time depth control for CP-SSOCT distal sensor based handheld microsurgery tools vol.6, pp.5, 2015, https://doi.org/10.1364/BOE.6.001942
  7. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography vol.8, pp.11, 2017, https://doi.org/10.1364/BOE.8.005253
  8. Integrated spatio-spectral method for efficiently suppressing honeycomb pattern artifact in imaging fiber bundle microscopy vol.306, 2013, https://doi.org/10.1016/j.optcom.2013.05.045
  9. Characterization of optical fiber imaging bundles for swept-source optical coherence tomography vol.50, pp.5, 2011, https://doi.org/10.1364/AO.50.000627
  10. Motorized Microforceps With Active Motion Guidance Based on Common-Path SSOCT for Epiretinal Membranectomy vol.22, pp.6, 2017, https://doi.org/10.1109/TMECH.2017.2749384
  11. Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe vol.55, pp.25, 2016, https://doi.org/10.1364/AO.55.006930
  12. Common-path spectral-domain optical low coherence interferometric system for the measurement of small changes in refractive index of Liquid Crystal cell vol.51, pp.5, 2013, https://doi.org/10.1016/j.optlaseng.2012.11.017
  13. Tomographic imaging of a suspending single live cell using optical tweezer-combined full-field optical coherence tomography vol.37, pp.14, 2012, https://doi.org/10.1364/OL.37.002784
  14. Fiber-optic OCT sensor guided “SMART” micro-forceps for microsurgery vol.4, pp.7, 2013, https://doi.org/10.1364/BOE.4.001045
  15. Decoupling structural artifacts in fiber optic imaging by applying compressive sensing vol.126, pp.19, 2015, https://doi.org/10.1016/j.ijleo.2015.05.045
  16. Tissue surface as the reference arm in Fourier domain optical coherence tomography vol.17, pp.7, 2012, https://doi.org/10.1117/1.JBO.17.7.071305
  17. Numerical characterization of an ultra-high NA coherent fiber bundle part II: point spread function analysis vol.21, pp.21, 2013, https://doi.org/10.1364/OE.21.025403