• Title/Summary/Keyword: Optical modulator

Search Result 377, Processing Time 0.027 seconds

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Realization of the multi-phase level CGH according to the multi-channel encoding method using a PAL-SLM (PAL-SLM을 이용한 다채널 부호화 방법에 따른 다위상형 CGH의 광학적 구현)

  • Jung, Jong-Rae;Baek, Woon-Sik;Kim, Jung-Hoi;Kim, Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • We proposed more efficient encoding methods that can design a multi-channel multi-level phase only computer-generated hologram(CGH) that can reconstruct many objects simultaneously without a conjugate image. We used a fabrication technique for the pixel oriented CGH for designing the pattern of the proposed multi-channel CGH. We investigated the difference of the optical efficiency(η), mean square error(MSE) and signal-to-noise ratio(SNR) of multi-channel CGHs that were designed by three kinds of encoding methods according to the number of quantization phase levels, and we estimated the performance of the pattern of the proposed multi-channel CGH. Generally, as the number of input objects' reference patterns stored in the CGH is increased, the reconstruction quality of the CGH is degraded. But we observed through computer simulation that the diffraction efficiency of the 1-ch CGH is 70%, and those of the 2-ch, 4-ch, 8-ch CGHs are 62%, 62% and 63%. Therefore we found that the diffraction efficiencies of the multi-channel CGHs using the newly proposed encoding method are similar to that of 1-ch CGH. We implemented the CGH optically using a liquid crystal spatial light phase modulator that consisted of a PAL-SLM efficiently coupled with a XGA type LCD by an optical lens and an LD for illuminating the LCD. We discussed the output images that are reconstructed from the PAL-SLM.

Phase Noise Characterization with Optical Carrier Suppression Level on Continuous Wave in the Ranges of Millimeter Waves Generated by Photomixing of Optical Double Sideband-Suppressed Carrier(DSB-SC) (광 반송파가 억압된 양측 대역 방식의 광 혼합을 통하여 발생된 밀리미터파 대역 연속파에서 광 반송파 억압 레벨에 따른 위상 잡음 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.974-982
    • /
    • 2009
  • Photomixing techniques beating two optical signals with different wavelengths and strong correlations are also very useful techniques to make a continuous wave(CW) signals in the range of millimeter(mm) and terahertz(THz) frequencies. An optical double sideband-suppressed carrier(DSB-SC) technique is one of the popular techniques to generate two optical signals with different wavelengths and strong correlations. DSB-SC signals with strong correlations are generated by a CW modulation of an optical carrier with a local oscillator and an optical modulator. In the previous parers related the DSB-SC for producing the CW signals within the range of mm and THz frequencies, there have been no reports why the optical carrier should suppress. In order to clear that, we have analyzed and measured the characteristics of the mm-wave CW signals made by the DSB-SC photomixing in this paper. From our analysis and measurement results, compared with the case of the DSB with the maximized optical carrier, the power and phase noise have improved about 23.9 dB and 21 dBc/Hz(@ 1 MHz offset frequency) in the case of the DSB with the minimized optical carrier (that is to say, the DSB-SC). Consequently, it is evident reason that the optical carrier should sufficiently suppress to obtain the mm-wave CW signals with the high power and low noise. This paper has given very helpful data to make mm- and THz-wave CW signals using photomixing techniques with the DSB-SC because the reason why the optical carrier should be suppressed is reported in this paper based on the numerical and experimental results.

Character display unit using a phase hologram array and a LC-SLM (위상 홀로그램 어레이와 LC-SLM를 이용한 문자 디스플레이 장치)

  • Kang, Bong-Gyun;Suh, Ho-Hyung;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.62-69
    • /
    • 1998
  • We demonstrated the character display unit using a binary phase hologram array and a liquid crystal-spatial light modulator (LC-SLM). It combines the dynamic property of the LC-SLM with the high-efficiency property of the phase hologram fabricated by photolithography. Experimental results of the proposed unit are presented. The character display unit proposed in this paper has a fundamental and important meaning as new method displaying images by using light, and it will be used in optical information processing and optical communications fields.

  • PDF

Uniformity Improvement of Micromirror Array for Reliable Working Performance as an Optical Modulator in the Maskless Photolithography System

  • Lee, Kook-Nyung;Kim, Yong-Kweon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • We considered the uniformity of fabricated micromirror arrays by characterizing the fabrication process and calculating the appropriate driving voltages of micromirrors used as virtual photomask in maskless photolithography. The uniformity of the micromirror array in terms of driving voltage and optical characteristics is adversely affected by factors, such as the air gap between the bottom electrode and the mirror plate, the spring shape and the deformation of the mirror plate or torsion spring. The thickness deviation of the photoresist sacrificial layer, the misalignment between mirror plate and bottom electrode, the aluminum deposition condition used to produce the spring and the mirror plate, and initial mirror deflection were identified as key factors. Their importance lies in the fact that they are related to air gap deviations under the mirror plate, asymmetric driving voltages in left and right mirror directions, and the deformation of the Al sring or mirror plate after removal of the sacrificial layer. The plasma ashing conditions used for removing the sacrificial layer also contributed to the deformation of the mirror plate and spring. Driving voltages were calculated for the pixel operation of the micromirror array, and the non-uniform characteristics of fabricated micromirrors were taken into consideration to improve driving performance reliability.

  • PDF

Design of ultra high speed ellipsometer using division-of-amplitude-photopolarimeter (Division-of-Amplitude-Photopolarimeter를 이용한 초고속 타원계의 설계)

  • 김상열;김상준
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.184-189
    • /
    • 2001
  • The design of an ultra fast ellipsometer is suggested. It adopts the division-of-amplitude-photopolarimeter (DOAP) as the polarization state detector. It does not utilize any moving part such as the rotating polarizer(analyzer) or even any electronic modulation part like the piezo-electric phase modulator. Hence the time resolution of the present system is limited only by the response time of the photo-detector and electronic circuit as well as the analog-digital converter. The feasibility of the suggested ultra fast ellipsometer was tested and the response time with nano-second time resolution has been verified. Its future application to the investigation of kinetics including that of the phase-change optical recording media like GezSb2 Tes is discussed. ussed.

  • PDF

Image-Quality Enhancement for a Holographic Wavefront Color Printer by Adaptive SLM Partitioning

  • Hong, Sunghee;Stoykova, Elena;Kang, Hoonjong;Kim, Youngmin;Hong, Jisoo;Park, Joosup;Park, Kiheon
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • The wavefront printer records a volume-reflection hologram as a two-dimensional array of elemental holograms from computer-generated holograms (CGHs) displayed on a spatial light modulator (SLM). The wavefront coming from the object is extracted by filtering in the spatial-frequency domain. This paper presents a method to improve color reproduction in a wavefront printer with spatial division of exposures at primary colors, by adaptive partitioning of the SLM in accordance with the color content encoded in the input CGHs, and by the controllable change of exposure times for the recording of primary colors. The method is verified with a color wavefront printer with demagnification of the object beam. The quality of reconstruction achieved by the proposed method proves its efficiency in eliminating the stripe artifacts that are superimposed on reconstructed images in conventional mosaic recording.

Effect of Laser Beam Trajectory on Donor Plate in Laser Induced Thermal Printing Process

  • Lee, Kwang-Won;Lee, Si-Jin;Kwon, Jin-Hyuk;Yi, Jong-Hoon;Park, Lee-Soon
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.362-367
    • /
    • 2011
  • Organic ($Alq_3$) film, which was coated on a donor plate, was transferred to an organic light emitting diode (OLED) substrate with help of heat generated by a dithering laser beam. The laser beam was diffracted in an acousto-optic modulator (AOM), then focused on the laser-to-heat converting layer of the donor plate; the focused spot followed trajectories guided by rotation of a Galvano-mirror. Three different functional waveforms, sine wave, square wave, and saw tooth wave were applied to the AOM as modulation signal to generate the dithering beam. The fluorescence microscope images of the donor plate showed that the patterns of removed $Alq_3$ film were affected considerably by the modulation waveforms and the phase difference between adjacent dithering beams. Further, the printed images of Alq3 film on the OLED substrate were different from the patterns of removed Alq3 film. Atomic force microscope images indicated that not only direct transfer but also deposition by sublimated vapor of Alq3 contributed to the pattern formation. Printed patterns affected considerably the electricity-to-light conversion characteristics of OLEDs. For uniform transfer, not only the phase relation of dithering beam lines but also adequate waveform were important.

Holographic optical memory by phase-modulation multiplexing (새로운 위상변조 다중화를 이용한 홀로그램 중첩기록 및 재생)

  • 손승대;고재량;이연호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.473-481
    • /
    • 1999
  • We propose a new scheme of hologram multiplexing that can improve the crosstalk noise in the conventional phase-code multiplexing. Our method is based on the idea that the separate holograms to be stored in a certain region of the photorefractve material should have relative phase other than $180^{\circ}$. To demonstrate the new idea we fabricate a phase spatial light modulator using piezo-electric material. The experimental result shows that the crosstalk noise in the restored holograms is reduced much in our method. We also computer simulate the hologram multiplexing and compare the result with the experimental data.l data.

  • PDF

Optical Implementation of Associative Menory Based on Two-Dimensional Neural Network Model (2차원 신경회로망 모델에 근거한 광연상 메모리의 실현)

  • 한종욱;박인호;이승현;이우상;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.8
    • /
    • pp.667-677
    • /
    • 1990
  • In this paper, optical inplementation of the Hopfield neural network model for two-dimensinal associative memory is described For the real-time processing of two-dimensional images, the commercial LCTVs are used as a memory mask and an input spatical light modulator. A 4-D memory matrix is realized with a 2-D mask of a matrix arrangement and the inner-products between arbitrary input pattern and memory matrix are carried out by using the multifocus hololens. The output image is then electronically thresholded and fed back to the input of the associative memory system by 2-D CCd camera. From the good experimental results for the high error correction capability, the proposed system can be applied to practical pattern recognition and machine vision systems.

  • PDF