• Title/Summary/Keyword: Optical mobility

Search Result 398, Processing Time 0.043 seconds

Electrical and Optical Characteristics of IZO Thin Films Deposited in Different Oxygen Flow Rate (산소 유량에 따른 IZO 박막의 전기적 및 광학적 특성)

  • Kwon, Su-Kyeong;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • In this study, we have investigated the effect of the substrate temperature and oxygen flow rate on the characteristics of IZO thin films for the OLED (organic light emitting diodes) devices. For this purpose, IZO thin films were deposited by RF magnetron sputtering at room temperature and $300^{\circ}C$ with various $O_2$ flow rate. In order to investigate the influences of the oxygen, the flow rate of oxygen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. IZO thin films deposited at room temperature show amorphous structure, whereas IZO thin films deposited at $300^{\circ}C$ show crystalline structure having an (222) preferential orientation regardless of $O_2$ flow rate. The electrical resistivity of IZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$. The change of electrical resistivity with increasing flow rate of $O_2$ was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. The electrical resistivity of the amorphous-IZO films deposited at R.T. was lower than that of the crystalline-IZO thin films deposited at $300^{\circ}C$. The change of electrical resistivity with increasing substrate temperature was mainly interpreted in terms of the charge carrier mobility rather than the charge carrier concentration. All the films showed the average transmittance over 85% in the visible range. The current density and the luminance of OLED devices with IZO thin films deposited at room temperature in 0.1sccm $O_2$ ambient gas are the highest amongst all other films. The optical band gap energy of IZO thin films plays a major role in OLED device performance, especially the current density and luminance.

Semiconductor CdTe-Doped CdO Thin Films: Impact of Hydrogenation on the Optoelectronic Properties

  • Dakhel, Aqeel Aziz;Jaafar, Adnan
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Doping or incorporation with exotic elements are two manners to regulate the optoelectronic properties of transparent conducting (TCO) cadmium oxide (CdO). Nevertheless, the method of doping host CdO by CdTe semiconductor is of high importance. The structural, optical, and electrical properties of CdTe-doped CdO films are studied for the sake of promoting their conducting parameters (CPs), including their conductivity, carrier concentration, and carrier mobility, along with transparency in the NIR spectral region; these are then compared with the influence of doping the host CdO by pure Te ions. X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and electrical measurements are used to characterise the deposited films prepared by thermal evaporation. Numerous results are presented and discussed in this work; among these results, the optical properties are studied through a merging of concurrent BGN (redshift) and BGW (blue shift) effects as a consequence of doping processes. The impact of hydrogenation on the characterisations of the prepared films is investigated; it has no qualitative effect on the crystalline structure. However, it is found that TCO-CPs are improved by the process of CdTe doping followed by hydrogenation. The utmost TCO-CP improvements are found with host CdO film including ~ 1 %Te, in which the resistivity decreases by ~ 750 %, carrier concentration increases by 355 %, and mobility increases by ~ 90 % due to the increase of Ncarr. The improvement of TCO-CPs by hydrogenation is attributed to the creation of O-vacancies because of H2 molecule dissociation in the presence of Te ions. These results reflect the potential of using semiconductor CdTe -doped CdO thin films in TCO applications. Nevertheless, improvements of the host CdO CPs with CdTe dopant are of a lesser degree compared with the case of doping the host CdO with pure Te ions.

Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

  • Shrestha, Shankar Prasad;Ghimire, Rishi;Nakarmi, Jeevan Jyoti;Kim, Young-Sung;Shrestha, Sabita;Park, Chong-Yun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.112-115
    • /
    • 2010
  • Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity ($\rho$), carrier concentration (n), and hall mobility ($\mu$) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity ($8.5 \times 10^{-2}$ ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility.

Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications (펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막)

  • Xian, Cheng-Ji;Lee, Chang-Hyun;Lee, Ye-Na;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF

Thickness Dependent Properties of Al-doped ZnO Film Prepared by Using the Pulsed DC Magnetron Sputtering with Cylindrical Target (원통형 타겟 타입 Pulsed DC Magnetron Sputtering에서 두께 변화에 따른 Al-doped ZnO 박막의 특성 변화)

  • Shin, Beom-Ki;Lee, Tae-Il;Park, Kang-Il;Ahn, Kyoung-Jun;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.47-50
    • /
    • 2010
  • Various thicknesses of Al-doped ZnO (AZO) films were deposited on glass substrate using pulsed dc magnetron sputtering with a cylindrical target designed for large-area high-speed deposition. The structural, electrical, and optical properties of the films of various thicknesses were characterized. All deposited AZO films have (0002) preferred orientation with the c-axis perpendicular to the substrate. Crystal quality and surface morphology of the films changed according to the film thickness. The samples with higher surface roughness exhibited lower Hall mobility. Analysis of the measured data of the optical band gap and the carrier concentration revealed that there were no changes for all the film thicknesses. The optical transmittances were more than 85% regardless of film thickness within the visible wavelength region. The lowest resistivity, $4.13\times10^{-4}\Omega{\cdot}cm^{-1}$ was found in 750 nm films with an electron mobility $(\mu)$ of $10.6 cm^2V^{-1} s^{-1}$ and a carrier concentration (n) of $1.42\times10^{21} cm^{-3}$.

Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method (증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구)

  • Kim, Whidong;Ahn, Ji Young;Kim, Soo Hyung
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

Semiconductor Engineering (산화물반도체 트랜지스터의 전기적인 특성)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.390-392
    • /
    • 2013
  • The research was observed the characteristic of ZnO based oxide semiconductors for the transparent conducting display. The optical-physical properties of ZnO based oxide semiconductors) grown on p-Si wafer were presented. ZnO based oxide semiconductors was prepared by the RF magnetron sputtering system. The characteristic of ZnO based oxide semiconductorswas strongly influenced by the amount of localized electron state by the defects. The PL spectra moved to long wave number with increasing the defects in the film. The mobility of a-IGZO film was increased with increasing the oxygen gas flow rate. The resistivity of ZnO based oxide semiconductors was also related to the mobility of ZnO based oxide semiconductors, and the mobility increased at the sample with low resistivity. The electric characteristic of a-IGZO TFTs showed that it is an n-type semiconductor.

  • PDF

Hall Factor of Electrons in γ -valley due to Various Scatterings (γ -valley에서 산란의 종류에 따른 전자의 홀 인수)

  • 서헌교;박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.658-663
    • /
    • 2002
  • Hall factor of electrons in $\Gamma$-valley is calculated as functions of temperature, impurity concentration, and nonparabolicity of conduction valleys by taking into account the current density obtained from the Boltzmann transport equation. The dependence of the Hall factor on the temperature is clearly shown in the case of the optical phonon scattering and that on the impurity concentration is obvious in the case of the ionized impurity scattering. As the nonparabolicity of the conduction band increases, the Hall factor due to the acoustic or optic phonon scattering increases, whereas that due to the ionized impurity scattering decreases. The change of the Hall factor can be analysed in terms of the dispersion of relaxation time.

비친수성유기물질(HOC)로 오염된 토양의 정화를 위한 동전기-생물활성화공정의 개발

  • 양지원;김상준;박지연;이유진;기대정
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.326-329
    • /
    • 2003
  • When an electrokinetic process is applied to a HOC-contaminated soil, hybrid types combined with soil flushing, chemical oxidation, and bioremediation are generally used. Especially when the electrokinetic process is combined with bioremediation, the hybrid technology can solve several limits of bioremediation such as low microbial mobility, low soil temperature, and shortage of nutrients in subsurface circumstance. Because microbial surface is charged negatively, the microorganism moves from cathode to anode under electrical field. In this study, mixed culture mainly-consisted by Pseudomonas sp. was applied to remediate pentadecane-contaminated kaolinite with particle size less than 300${\mu}{\textrm}{m}$. This remediation system was named ‘electrokinetic bioaugmentation’ and consisted of model aquifer, electrode reservoirs, bioreactor, power supply, and pump. The mixed culture above 0.5 of optical density in bioreactor was supplied to two reservoirs and penetrated soil when the electric current was applied. To enhance the removal efficiency, the optimal medium composition, electric current, and voltage were investigated.

  • PDF

Use of High-Temperature Gas-Tight Electrochemical

  • Park, Jong-Hee;Beihai Ma;Park, Eun-Tae
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.103-113
    • /
    • 1998
  • By using a gas-tight electrochemical cell, we can perform high-temperature coulometric titration and measure electronic transport properties to determine the elecronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilitized zirconia(YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressure ($pO_2=10^{-35}$ to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria $(Ca-CeO_2 \;and\; CeO_2)$, copper oxides and copper-oxide-based ceramic superconductors, transition metal oxides, $SrFeCo_{0.5}O_x,\; and \;BaTiO_2$.

  • PDF