• Title/Summary/Keyword: Optical imaging

Search Result 1,297, Processing Time 0.025 seconds

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection (비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술)

  • Oh, Gyung-Hwan;Kim, Hak-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.328-334
    • /
    • 2018
  • The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

Optical Coherence Tomography Based on a Continuous-wave Supercontinuum Seeded by Erbium-doped Fiber's Amplified Spontaneous Emission

  • Lee, Ju-Han;Jung, Eun-Joo;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • In this study, the use of a continuous-wave (CW) supercontinuum (SC) seeded by an erbium-doped fiber's amplified spontaneous emission (ASE) for optical-coherence tomography imaging is experimentally demonstrated. It was shown, by taking an in-depth image of a human tooth sample, that due to the smooth, flat spectrum and long-term stability of the proposed CW SC, it can be readily applied to the spectral-domain optical-coherence tomography system. The relative-intensity noise level and spectral bandwidth of the CW SC are also experimentally analyzed as a function of the ASE beam power.

Development of a High-Speed Endoscopic OCT System and Its Application to Three-Dimensional Intravascular Imaging in Vivo (고속 내시경적 OFDI 시스템 개발과 이를 이용한 3차원 생체 혈관 내부 이미징)

  • Cho, Han Saem;Jang, Sun-Joo;Oh, Wang-Yuhl
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.2
    • /
    • pp.67-71
    • /
    • 2014
  • Intravascular optical coherence tomography (OCT) enables imaging of the three-dimensional (3D) microstructure of a blood vessel wall. While 3D vascular visualization provides detailed information of the vessel wall and intraluminal structures, a longitudinal imaging pitch that is several times bigger than the imaging resolution of the system has limited true high-resolution 3D imaging. In this paper we demonstrate high-speed intravascular OCT in vivo, acquiring images at a rate of 350 frames per second. A 47-mm-long rabbit aorta was imaged in 3.7 seconds, after a short flush with contrast agent. The longitudinal imaging pitch was 34 micrometers, comparable to the transverse imaging resolution of the system. Three-dimensional volume rendering showed greatly enhanced visualization of tissue microstructure and stent struts, relative to what is provided by conventional intravascular imaging speeds.

Optical Encryption Scheme with Multiple Users Based on Computational Ghost Imaging and Orthogonal Modulation

  • Yuan, Sheng;Liu, Xuemei;Zhou, Xin;Li, Zhongyang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.476-480
    • /
    • 2016
  • For the application of multiusers, the arrangement and distribution of the keys is a much concerning problem in a cryptosystem. In this paper, we propose an optical encryption scheme with multiple users based on computational ghost imaging (CGI) and orthogonal modulation. The CGI encrypts the secret image into an intensity vector rather than a complex-valued matrix. This will bring convenience for post-processing and transmission of the ciphertext. The orthogonal vectors are taken as the address codes to distinguish users and avoid cross-talk. Only the decryption key and the address code owned by an authorized user are matched, the secret image belonging to him/her could be extracted from the ciphertext. Therefore, there are two security levels in the encryption scheme. The feasibility and property are verified by numerical simulations.

Simultaneous Imaging Using Combined Optical Coherence Tomography (OCT) and Photoacoustic Microscopy (PAM) (광간섭 단층 촬영 장치와 광음향 현미경의 결합을 통한 동시 이미지 획득 연구)

  • Kim, Sehui;Lee, Changho;Han, Seonghoon;Kang, Hyun Wook;Oh, Junghwan;Kim, Jeehyun;Kim, Chulhong
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • In this study, we developed an integrated optical coherence tomography - photoacoustic microscopy (OCT-PAM) system to simultaneously provide optical absorption and scattering information. Two different laser sources, such as a pulsed laser for PAM and a superluminescent diode for OCT, were employed to implement the integrated OCT-PAM system. The performance of the OCT-PAM system was measured by imaging carbon fibers. We then imaged black and white hairs to demonstrate the simultaneous OCT-PAM imaging capabilities. As a result, OCT can produce 3-D images of both black and white hairs, whereas PAM is only able to image the black hair due to strong optical absorption of black hair.

Development of the Ultra Precision Thermal Imaging Optical System (초정밀 열 영상 현미경 광학계 개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.15-21
    • /
    • 2010
  • Recently, there is a demand for a thermal imaging microscope in the medical field as well as the semi-conductor industry Although the demand of the advanced thermal imaging microscope has been increased, it is very difficult to obtain the technology of developing a thermal camera, because it is used for defense industry. We developed the ${\times}5$ zoom microscope which has $3\;{\mu}m$ spatial resolution to research the design and fabrication of the IR (Infrared) optical system. The optical system of the IR microscope consists of four spherical lenses and four aspheric lenses. We verified individual sensitivity of each optical parameter as the first order approach to the analysis. And we also performed structure and vibration analysis. The optical elements are fabricated using Freeform 700A. The measurement results of surface roughness and form accuracy using NT 2000 and UA3P are Ra 2.36 nm and P-V $0.13\;{\mu}m$. Finally we ascertained resolution power of $3\;{\mu}m$ using USAF (United State Air Force) 1951 IR resolution test chart.

Focus-adjustment Method for a High-magnification Zoom-lens System (고배율 줌 광학계의 상면 오차 보정 방법)

  • Jae Myung Ryu
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.66-71
    • /
    • 2023
  • Zoom lenses are now starting to be applied to mobile-phone cameras as well. A zoom lens applied to a mobile-phone camera is mainly used to capture images in the telephoto range. Such an optical system has a long focal length, similar to that of a high-magnification zoom optical system, so the position of the imaging device also shifts significantly, due to manufacturing errors of the lenses and mechanical parts. In the past, the positional shift of the imaging device was corrected by moving the first lens group and the total optical system, but this paper confirms that the position of the imaging device can be corrected by selecting any two moving lens groups. However, it is found that more distance must be secured in the front and rear of a moving lens group for this purpose.