• 제목/요약/키워드: Optical flow estimation

검색결과 122건 처리시간 0.027초

첨단운전자보조시스템용 이동객체검출을 위한 광학흐름추정기의 설계 및 구현 (Design and Implementation of Optical Flow Estimator for Moving Object Detection in Advanced Driver Assistance System)

  • 윤경한;정용철;조재찬;정윤호
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.544-551
    • /
    • 2015
  • 본 논문에서는 첨단 운전자 보조 시스템 (ADAS; advanced driver assistance system) 용 이동객체검출 (MOD; moving object detection)을 위한 광학흐름추정기 (OFE; optical flow estimator) 의 하드웨어 구조 설계 결과를 제시하였다. 광학흐름추정 알고리즘은 차량 환경에서 높은 정확도를 나타내는 광역 최적화 (global optimization) 기반 Brox 알고리즘을 적용하였다. Brox 알고리즘의 에너지 범함수 (energy functional)를 최소화 하는 과정에서 생성되는 Euler-Lagrange 방정식을 풀기 위해 하드웨어 구현에 용이한 Cholesky factorization이 적용되었으며, 메모리 접근율 (memory access rate)를 줄이기 위해 시프트 레지스터 뱅크 (shift register bank)를 도입하였다. 하드웨어 구현은 Verilog-HDL을 사용하였으며, FPGA 기반 설계 및 검증이 수행되었다. 제안된 광학흐름추정기는 40.4K개의 logic slice 및 155개의 DSP48s, 11,290 Kbit의 block memory로 구현되었다.

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

다수 마커를 활용한 영상 기반 다중 사용자 증강현실 시스템 (An Image-based Augmented Reality System for Multiple Users using Multiple Markers)

  • 문지원;박동우;정현석;김영헌;황성수
    • 한국멀티미디어학회논문지
    • /
    • 제21권10호
    • /
    • pp.1162-1170
    • /
    • 2018
  • This paper presents an augmented reality system for multiple users. The proposed system performs ar image-based pose estimation of users and pose of each user is shared with other uses via a network server. For camera-based pose estimation, we install multiple markers in a pre-determined space and select the marker with the best appearance. The marker is detected by corner point detection and for robust pose estimation. the marker's corner points are tracked by optical flow tracking algorithm. Experimental results show that the proposed system successfully provides an augmented reality application to multiple users even when users are rapidly moving and some of markers are occluded by users.

차량 플랫폼에 최적화한 자차량 에고 모션 추정에 관한 연구 (A Study on Vehicle Ego-motion Estimation by Optimizing a Vehicle Platform)

  • 송문형;신동호
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.818-826
    • /
    • 2015
  • This paper presents a novel methodology for estimating vehicle ego-motion, i.e. tri-axis linear velocities and angular velocities by using stereo vision sensor and 2G1Y sensor (longitudinal acceleration, lateral acceleration, and yaw rate). The estimated ego-motion information can be utilized to predict future ego-path and improve the accuracy of 3D coordinate of obstacle by compensating for disturbance from vehicle movement representatively for collision avoidance system. For the purpose of incorporating vehicle dynamic characteristics into ego-motion estimation, the state evolution model of Kalman filter has been augmented with lateral vehicle dynamics and the vanishing point estimation has been also taken into account because the optical flow radiates from a vanishing point which might be varied due to vehicle pitch motion. Experimental results based on real-world data have shown the effectiveness of the proposed methodology in view of accuracy.

Estimation of Crowd Density in Public Areas Based on Neural Network

  • Kim, Gyujin;An, Taeki;Kim, Moonhyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권9호
    • /
    • pp.2170-2190
    • /
    • 2012
  • There are nowadays strong demands for intelligent surveillance systems, which can infer or understand more complex behavior. The application of crowd density estimation methods could lead to a better understanding of crowd behavior, improved design of the built environment, and increased pedestrian safety. In this paper, we propose a new crowd density estimation method, which aims at estimating not only a moving crowd, but also a stationary crowd, using images captured from surveillance cameras situated in various public locations. The crowd density of the moving people is measured, based on the moving area during a specified time period. The moving area is defined as the area where the magnitude of the accumulated optical flow exceeds a predefined threshold. In contrast, the stationary crowd density is estimated from the coarseness of textures, under the assumption that each person can be regarded as a textural unit. A multilayer neural network is designed, to classify crowd density levels into 5 classes. Finally, the proposed method is experimented with PETS 2009 and the platform of Gangnam subway station image sequences.

유체기계연구에서의 PIV의 적용 (Application of PIV to Fluid-Machinery Studies)

  • 이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1997년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.188-195
    • /
    • 1997
  • The application of PIV to the studies of fluid-machines, especially focused on turbo-machinery is reviewed by scrutinizing the previous investigation. Owing to the inevitable high-speed analysis of turbo-machinery consisting of rotating impellers, the importance of optical setups to cope with illumination problem is frequently mentioned as main ingredient affecting the PIV performance. And the acquisition of the relative velocity and absolute velocity is determined mainly by the optical recording conditions. A few studies cast satisfactory extension of the PIV data to quantitative pressure estimation and related noise assessment.

  • PDF

실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법 (A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation)

  • 김웅기;전준철
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.117-124
    • /
    • 2013
  • 본 논문에서는 실시간으로 입력되는 비디오 영상으로부터 사용자의 얼굴 방향을 효율적으로 추정하는 새로운 방법을 제안하였다. 이를 위하여 입력 영상으로부터 외부조명의 변화에 덜 민감한 Haar-like 특성을 이용하여 얼굴영역의 검출을 수행하고 검출 된 얼굴영역 내에서 양쪽 눈, 코, 입 등의 주요 특성을 검출한다. 이 후 실시간으로 매 프레임마다 광류를 이용해 검출된 특징 점을 추적하게 되며, 추적된 특징 점을 이용해 얼굴의 방향성 추정한다. 일반적으로 광류를 이용한 특징 추적에서 발생할 수 있는 특징점의 좌표가 유실되어 잘못된 특징점을 추적하게 되는 상황을 방지하기 위하여 검출된 특징점의 템플릿 매칭(template matching)을 사용해 추적중인 특징점의 유효성을 실시간 판단하고, 그 결과에 따라 얼굴 특징 점들을 다시 검출하거나, 추적을 지속하여 얼굴의 방향성을 추정을 가능하게 한다. 탬플릿 매칭은 특징검출 단계에서 추출된 좌우 눈, 코끝 그리고 입의 위치 등 4가지 정보를 저장한 후 얼굴포즈 측정에 있어 광류에의해 추적중인 해당 특징점들 간의 유사도를 비교하여 유사도가 임계치를 벗어 날 경우 새로이 특징점을 찾아내는 작업을 수행하여 정보를 갱신한다. 제안된 방법을 통해 얼굴의 특성 추출을 위한 특성 검출과정과 검출된 특징을 지속적으로 보완하는 추적과정을 자동적으로 상호 결합하여 안정적으로 실시간에 얼굴 방향성 추정 할 수 있었다. 실험을 통하여 제안된 방법이 효과적으로 얼굴의 포즈를 측정할 수 있음을 입증하였다.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

안정적인 실시간 얼굴 특징점 추적과 감정인식 응용 (Robust Real-time Tracking of Facial Features with Application to Emotion Recognition)

  • 안병태;김응희;손진훈;권인소
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

센서퓨전과 칼만필터에 기반한 무인항고기의 속도와 위치 추정 (Velocity and Position Estimation of UAVs Based on Sensor Fusion and Kalman Filter)

  • 강현호;김관수;이상수;유성현;이동훈;이동규;김영은;안춘기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.430-433
    • /
    • 2018
  • This paper proposes the Kalman filter (KF) with optical flow method to estimate the position and the velocity of unmanned aerial vehicles (UAVs) in the absence of global positioning system (GPS). A downward-looking camera, a gyroscope and an ultrasonic sensor are fused to compensate the measurement from optical-flow method. To overcome the problem of dealing with noise in onboard sensors, the KF is incorporated to efficiently predict the velocity and estimate the position. Basic mechanisms of optical flow and the KF are introduced and experiments are conducted to show how the techniques involved improve the estimations.