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Abstract 
 

There are nowadays strong demands for intelligent surveillance systems, which can infer or 

understand more complex behavior. The application of crowd density estimation methods 
could lead to a better understanding of crowd behavior, improved design of the built 

environment, and increased pedestrian safety. 

In this paper, we propose a new crowd density estimation method, which aims at estimating 
not only a moving crowd, but also a stationary crowd, using images captured from surveillance 

cameras situated in various public locations. The crowd density of the moving people is 

measured, based on the moving area during a specified time period. The moving area is 
defined as the area where the magnitude of the accumulated optical flow exceeds a predefined 

threshold. In contrast, the stationary crowd density is estimated from the coarseness of textures, 

under the assumption that each person can be regarded as a textural unit. A multilayer neural 

network is designed, to classify crowd density levels into 5 classes. Finally, the proposed 
method is experimented with PETS 2009 and the platform of Gangnam subway station image 

sequences. 
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1. Introduction 

Population growth, along with the urbanization, has caused more problems in many public 

areas, such as subway or airport terminals, hospitals, etc. When persons gather closely 

together, the possibility that accidents will be caused by the crowding is very high. So, many 
surveillance systems have been installed in public areas, but not all of those can be monitored 

in real-time, because the operators that observe the monitors are very few, compared with the 

number of monitors. For example, an observer can miss crucial accidents or only detect them 

after considerable delays. Thus, intelligent systems for preventing accidents are needed, such 
as Intelligent Surveillance Systems. 

Many researchers in the field of computer vision have studied ‘People Counting’ and 

‘Crowd Density Estimation’ methods for several years. Crowd density can be measured from 
the number of pedestrians in a specific place. Counting the number of people through image 

processing requires a sophisticated combination of various techniques, such as object 

detection and pattern matching, hence results in heavy computational costs. These studies 
show that the greater the number of foreground pixels, the higher the crowd density is. A 

background image is used to classify image pixels as either pedestrians or background [1]. A 

functional relationship between the number of classified pedestrian pixels, and number of 

people, is calculated manually for the measurement of crowd density. Another example is 
proposed by Ma et al. [2], using background removal. The relationship between the number of 

foreground pixels and number of persons is obtained by applying a geometric correction. 

However, their works are only true when there are not serious occlusions between persons, 
with an ideal setting (i.e. proper height view, orthographic projection), perfect segmentation, 

and further, with the assumption of an equal size of persons. 

Various features of crowds are extracted from a crowd scene to estimate the crowd density. 

The important features are edge, texture, optical flow, etc. These features can be extracted 
using computer vision techniques. Background subtraction and edge detection are used by 

Kong et al. [3][4]. They introduce a way of using the extracted edge orientation and blob size 

histograms as features. Obviously, more clues may indicate a more accurate solution for the 
analysis of crowd scenes. The relationship between the number of pedestrians and the feature 

histograms can be learned from training data. 

Zhan et al. [5] present a technique that is based on differences of texture patterns of the 
crowd images. It assumes that images of low-density crowds tend to present coarse texture, 

while images of dense crowds tend to present fine textures. According to this technique, they 

propose a method that estimates the crowd density from the texture of the image, using 

Minkowski fractal dimensions [6]. Furthermore, the estimation of crowd density using texture 
classification is carried out by means of self-organizing maps [7]. While previous works 

successfully detect moving crowds, for estimating crowd density in public areas, they can 

hardly detect stationary crowds. Therefore, a new technique that can simultaneously detect 
moving crowds and stationary crowd is needed. 

In this paper, we propose a new crowd density estimation method, which aims at estimating 

not only the crowd density of moving crowds, but also the crowd density of stationary crowds, 
using images obtained from surveillance cameras in various public areas. We devised two 

efficient features, moving area and contrast, to estimate the crowd density from the acquired 

video scenes. The moving crowds are estimated from the moving area, where the magnitude of 

the accumulated optical flow exceeds a predefined threshold. The stationary crowds are 
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estimated from the coarseness of textures, under the assumption that each person is regarded 

as a textural unit. The developed features do not require segmentation of people from 
background, which causes the interference problem of shadow, especially for outdoor image 

sequences. A 2-layer neural network is designed to classify crowd density into 5 classes. 

Finally the proposed method is experimented with PETS 2009 and Gangnam subway station 

image sequences. 
The rest of this paper is organized as follows: In section 2, we explain an extraction process 

of moving area feature and contrast feature. For an indoor image sequence, a spatial 

transformation process is introduced to normalize person size, independent of his or her 
distance from a camera. In section 3, the designed neural network for estimation of crowd 

density is described, together with a training algorithm. In section 4, we show the experimental 

results, based on the proposed method. The neural network is trained using training sets, which 
are produced by labeling each frame with the number of persons in the image. By quantizing 

the estimated crowd density, the output of the neural network, the crowd level, is classified 

into 5 classes. The performance is measured as the classification accuracy of test sets. Finally 

in section 5, a discussion of the advantages of the proposed method and further research 
directions are presented. 

2. Crowd Feature Extraction 

In the proposed algorithm, we extract two features, moving area and contrast, from the crowd 

image sequences. A moving area, which is a set of pixels involved in a motion within a certain 

time period, is identified by using accumulated optical flow vectors. Since the optical flow is 
the instantaneous velocity of a pixel, we need an intelligent algorithm for processing computed 

optical flow, to detect pixels involved in personal motion. In order to measure the coarseness 

of crowd textures, we propose a gray level dependence matrix. The measured contrast is 
normalized to be independent of the absolute contrast of the captured image sequences. 

The block diagram of our proposed neural based crowd density estimation method is shown 

as Fig. 1. For an indoor image, we introduce an additional process, extraction of ROI (Region 

of Interest) and spatial transformation. ROI is defined as a region where passengers pass 
through. Extraction of a ROI results in reducing the noise effect included in the non-ROI 

region, thus improving the crowd density estimation accuracy. Since the size of a person is 

different according to their distance from the camera, spatial transformation is applied to 
normalize the person size. The next step consists of an extraction process, not only from a 

moving crowd but also from a stationary crowd. The optical flow is calculated as a pixel wise 

movement vector, and the optical flow is accumulated for several frames. The region of 
moving crowd is identified as a set of pixels whose magnitude of accumulated optical flow 

exceeds a threshold.  

 

 
 

Fig. 1. The block diagram of proposed method for crowd density estimation using feature extraction and 

neural network classification 
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The moving area is measured as the ratio of pixels in the moving region to the total pixels. The 

feature for representing stationary crowd density is defined from texture measure, derived 
from a gray level dependence matrix. The feature of moving area and the feature of texture is 

applied to a multilayer neural network. The neural network produces an estimated crowd 

density as a real number from 0 to 1, where 1 denotes the most crowded situation. 

2.1 Spatial Transformation 

We categorized public areas into indoor areas and outdoor areas, for estimation of crowd 

density. We chose a platform image sequence of a subway station as an indoor environment 
[8]. As an outdoor environment, we chose image sequence of PETS 2009, which includes 

shadows resulting from the interference of objects with illumination light [9]. 

Fig. 2 shows images of PETS 2009 and Gangnam subway station platform. While Fig. 2-(a) 
shows that people scatter over the area of the image, Fig. 2-(b) shows that people do not 

appear beyond the yellow safety line. To prevent safety accidents, PSDs (Platform Screen 

Doors) have been installed beyond the safety line. Therefore, the PSD area should not be used 

to measure crowd density, as the right side of the yellow safety line is enough to measure the 
crowd density. Thus the ROI is set up as the right side of the yellow safety line. 
 

  
(a) (b) 

Fig. 2. (a) PETS 2009 (b) Gangnam subway station 

The ROI is defined for the subway station image as in Fig. 3, where N and M are the number of 

pixels in a row and a column of an image, respectively. The slanted line is generated from the 

yellow safety line of platform. The left part of the line is the region that the train passes 
through, and is shielded by PSD. This region is removed for further analysis, since it is full of 

noise, due to the reflectance property of plastics used in PSDs. 

 

 

Fig. 3. Region of Interest 
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Since a motion vector is proportional to the person’s size, it is hard to detect motion for small 

people in the far distance. Thus, the extracted ROI image, shown in Fig. 4-(b), needs to be 
spatially transformed [10]. 

The image ),( yxf  is transformed to an image )','( yxg . Transformation is expressed as 

),(' ),,(' yxsyyxrx  . The transformation is performed by the use of the following 4 sets of tie 

points. In each set, the point to the left of the arrow is a coordinate of the input point, and the 

point to the right of the arrow is a coordinate of a mapped point in the transformed image. 
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Then, the transformation is modeled by the following pair of bilinear equations. 
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(a) (b) (c) 

Fig. 4. (a) Original image (b) Result of image after setting ROI (c) Spatially transformed image 

In order to equalize pedestrian sizes regardless of the distance from the lens and angle of view, 

we applied a geometric transformation method. The transformed image is used to compute 

optical flow vector so that the magnitude of the optical flow vector is dependent little on the 
distance from the lens. 

 Fig. 4-(c) shows a spatially transformed image of Gangnam subway station platform. The 

yellow safety line is geometrically transformed to a vertical line. The size of a person becomes 
less dependent on the distance of the person from the camera location. 

2.2 Moving Area 

From the spatially transformed image, the optical flow, the velocity of each pixel is computed 

in order to identify regions of moving passengers. While the global method of the Horn and 

Schunck algorithm produces a high density of flow vectors, using a motion smoothness 

assumption, it has a drawback of noise sensitivity [11][12][13]. In contrast, the local method   
of the Lucas-Kanade algorithm is less sensitive to image noise, since it solves optical flow 

constraint equations for neighbor pixels, using a least square criterion. However, this method 

does not provide flow information for the uniform grey level regions, as computation is 
performed based on local region.  

In this paper we need to estimate flow vector distribution for moving passengers, which 

requires a flow vector not only for the boundary of a person, but also for the interior region of 
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a person. Thus we used the so-called combined local-global (CLG) method for optical flow 

computation [14]. It is known that this method combines the advantages of the global Horn 
and Schunck approach, i.e. dense flow fields and the local Lucas-Kanade method i.e. high 

noise robustness.  

Let ),,( tyxf  be an image sequence, where ),( yx  denotes the coordinate of a pixel in the 

image plane, and t is the time when the image is captured. The CLG method computes the 

optical flow field Tyxvyxu )),(),,((  at time t, by minimizing the following function.  

 

 dxdyvufJvuE T

   )()(),(
22

3                                    (3) 

 

where the vector field Tyxvyxuyxw )1),,(),,((),(  describes the optical flow field, and 

),( yxu denotes the x directional velocity i.e. tx  , and ),( yxv  denotes the y  directional 

velocity i.e. ty   at a pixel ),( yx . The second term in equation (3) denotes the smoothness 

constraint of optical flow. u  denotes spatial gradient of x directional 

velocity TT
yx yuxuuu ),(),(  , while v  denotes the spatial gradient of y directional 

velocity TT
yx yvxvvv ),(),(  . The matrix f3  denotes the spatiotemporal gradient of 

grey levels i.e. TT
tyx tfyfxffff ),,(),,(  . The matrix )( 3 fJ  is the ‘motion tensor’ 

or ‘structure tensor’ given by equation (4). The weight   denotes the relative importance of 

the smoothness assumption. 
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),( vuE  is minimized by solving its Euler-Lagrange equation (5) given by 
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where h denotes the size of the rectangular pixel grid, iu  and iv  are the approximation to u and 

v at some pixel i respectively. nmiJ  denotes the thmn ),( component of the structure tensor of 

pixel i. )(iR  represents the set of neighbors of pixel i. 

Fig. 5 shows the computed optical flow for the spatially transformed Gangnam subway 

station image, Fig. 4-(a). The optical flow vector of a pixel is drawn as a vector located at that 

pixel coordinate.  
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(a)  (b) 

Fig. 5. (a) original image (b) optical flow for original image 

The computed optical flow denotes the motion of each pixel at specific time t. The moving 
crowd can be detected based on the computed optical flow. In this paper, we measure the area 

covered by persons moving between tt   and t, in order to estimate the crowd density. To 

identify regions corresponding to a person moving between tt   and t, we accumulate 

optical flow for time window t . The magnitude of optical flow for pixel ),( yx  at time t, 

),,( tyxI  is computed as equation (6) 

 

22 ),(),(),,( yxvyxutyxI                                          (6) 

 

The accumulated optical flow for pixel ),( yx , ),( yxAO  is computed as equation (7). 

 






t

ttk

kyxIyxAO ),,(),(                                                (7) 

 

 Pixel ),( yx  is defined as a motion cell i.e. 1),( yxM , if ),( yxAO exceeds a predefined 

threshold ),( yxT . Otherwise, the cell ),( yx  is not a motion cell i.e. 0),( yxM . 
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The threshold is set from the computed optical flow as follows. 
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where  is constant, F is the number of frames in the training set.  

The total number of motion cells in a frame becomes a feature “moving area” denoting an 

area covered by persons moving between tt   and t. Fig. 6-(a) shows a PETS 2009 original 

image. Fig. 6-(b) shows the result of computed optical flow from Fig. 6-(a). Fig. 6-(c) shows 
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the accumulated optical flow during 5 frames. The grey level of a pixel ),( yx  in Fig. 6 (c) 

denotes ),( yxAO . The moving area becomes the area of the white region in Fig. 6(c).  

 

   
(a) (b) (c) 

Fig. 6. (a) Original image (b) Optical flow (c) AO (accumulated optical flow) 

Notice that the crowded area of the right part of the image is represented as a wide white area 

in the AO image. The less crowded area in the top left part of the image is represented as a 
small white area in the AO image. 

Fig. 7 shows the process of computing the accumulated optical flow from the platform 

image sequence. Fig. 7-(a) shows the original image of Gangnam subway station. Fig. 7-(b) 
shows the spatially transformed image from extracted ROI image. Fig. 7-(c) shows the image 

of the computed optical flow from Fig. 7-(b). Fig. 7-(d) shows the accumulated optical flow 

during 5 frames. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 7. (a) Original image (b) Result of spatially transformed image 

(c) Optical flow (d) Accumulated optical flow 
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The relationship between the moving area and the crowd density is shown in Fig. 8. In this 

figure, the moving area is normalized to a real number between 0 and 1, by equation (10). 
    

    
Pixels Total ofNumber 

 CellsMotion  ofNumber 
Area Moving Normalized                                    (10) 

 

Fig. 8. Relationship between the crowd density and the moving area 

The vertical axis of Fig. 8 denotes the normalized crowd density. The crowd density of each 

frame is measured by manually counting the people in the frame. Fig. 8 shows that the moving 
area increases as the crowd density increases, in both test image sequences. For the subway 

station image, the small increase of the moving area in the range of 0.7-0.9 results in the rapid 

increase of crowd density. The reason is that in a subway station, the moving area does not 

increase much, due to motion interference among persons when it is crowded. Thus the 
moving area is a good feature to estimate the crowd density. 

Another feature is a distribution characteristics of the motion cells. As it is more crowded, 

people will be spread evenly across the image plane. The distribution of motion cells is 
measured using random variables cm and rm. 

 

cm [i] = number of motion cells in the i
th
 column of pixels. i=0,1,2,...,M-1 

rm [j] = number of motion cells in the j
th
 row of pixels. j=0,1,2,…,N-1 

 

where M and N are the total number of pixel columns and rows, respectively. 
 

The scene is regarded as more crowded, if cm and rm are distributed uniformly. The sample 

standard deviations of cm and rm are computed as cmS , rmS , respectively, as follows 
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where cm , rm  are sample means of cm and rm, respectively. 

The moving area, however, increases in accordance to any increase in velocity. For example, 
similar moving areas are extracted from a single person running and from two people walking. 

To solve the problem in people counting that arises from moving areas when measuring crowd 

density, we suggest the use of contrast as an independent feature from moving area. Since 

contrast indicates the differences between pixels that can be measured independently of crowd 
movements, it prevents problems that may appear in moving areas and detects stationary 

crowds. 

2.3 Contrast 

In very crowded situations, such as rush hour in a subway station, there is no motion of 

passengers, especially in staircase bottlenecks. Also, there are persons in the scene without any 
movement.  To detect stationary people, we adopt a gray level dependence matrix method [7]. 

This method is selected, as we assumed that the crowd formulate texture, since the appearance 

of persons at a constant distance can be regarded as texture. Thus, low density crowds tend to 

present coarse textures, while dense crowds tend to present fine textures. The gray level 
dependence matrix represents the second-order joint conditional probability density 

functions, ),|,( djif . Each ),|,( djif is the probability of the pair of grey levels ),( ji  

occurring in a pair of pixels of the image, given that these pixels are separated by a distance d 

along the direction . 

 

θd

(i,j)
djif

direction  along  distanceby  separated pairs pixel ofnumber  total

 levelgray  with pairs pixel ofnumber 
),|,(                (14) 

 

To avoid computational burden, we restrict these parameters, d and , to a limited number 

of values. Only four angles (0°, 45°, 90°, 135°), and only one distance (one pixel width), 

are used in this paper. 
A gray level dependence matrix for fine texture tends to be more uniformly dispersed than a 

gray level dependence matrix for coarse texture. In order to measure the relative spread of a 

gray level dependence matrix, we use the contrast measure of the spread indicators proposed 
by Haralick, as shown in equation (15).  
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Finally, the gray level dependence matrix is summed and normalized. 
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Fig. 9. Relationship between the crowd density and the normalized contrast 

Fig. 9 shows the relationship between the crowd density and the contrast for two test image 
sequences. The crowd density in images of PETS2009 increases gradually, while the crowd 

density in images of Gangnam subway station increases rapidly. 

3. Neural Network Model 

A neural network is an information processing paradigm that is inspired by the way biological 

nervous systems, such as the brain, process information. Neural networks are sometimes 
called machine learning algorithms, because changing of its connection weights causes the 

network to learn the solution to a problem. The strength of connection between the neurons is 

stored as a weight-value for the specific connection. The system learns new knowledge by 

adjusting these connection weights. 
The backpropagation algorithm used in this paper proves to be highly successful in the 

training of a multilayer neural network. Backpropagation is a gradient descent algorithm, in 

which the network weights are moved along the negative of the gradient of the performance 
function. The training begins with random weights, and the goal is to adjust them so that the 

error will be minimal. 

Using smaller network size does not guarantee to converge to the best solution, but using 
larger network size requires large computational demand and may be over-fitting. In this paper, 

a multilayer network is proposed, since the decision region for each class is not single 

hyperplane but convex region. In order to reduce the over fitting problem, we let hidden layer 

be 1. The number of nodes in the hidden layer is carefully decided as 6 in trial and error 
method.  

A neural network with 2 input units, 6 hidden units and 1 output unit is used. The input 

nodes are connected to the extracted features i.e. moving area and contrast information. The 
value of the output node is a real number between 0 and 1. The output value is uniformly 

quantized to 5 levels as: Very Low (0~0.2), Low (0.2~0.4), Medium (0.4~0.6), High (0.6~0.8), 

and Very High (0.8~1.0). Fig. 10 shows the designed multilayer perceptron model.  
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Fig. 10. Our proposed 2-layer perceptron for crowd density measurement 

The activation function is in the form of ))exp(1(1)( xxfs  . This function is smooth, 

continuous, and differentiable. It has an absolute upper and a lower limit. The sigmoid 
function is one of the most widely used activation functions, and is illustrated in Fig. 11: 

 

 

Fig. 11. Sigmoid function 

The following notation is used. Let jiu  denote the weight of the i
th
 input node to the j

th
 

neuron of the hidden layer; let kjw  denote the weight from the j
th
 hidden neuron to the k

th
 

neuron of the output layer. Let )},(,),,(),,{( )()()1()1()1()1( pp dxdxdx   be a set of p  training 

patterns, where 2)( Rx i   is the i
th
 input vector in the 2-dimensional feature space, and 

]1,0[)( id is a desired output value for the i
th
 input vector. Let ]1,0[)( io be an actual value of 

output node for i
th
 input vector.  

A Sum squared-error function, which is given by 
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is selected to be a cost function. The learning algorithm strives to minimize the learning error 

defined by the cost function. 

The network acts as an approximating function ),,( )(ixWUF , with two sets of fixed weights: 
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The output of the neuron of the output layer is given by 
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In equation (19), k denotes a vector of outputs of hidden nodes. Here, k is written in 

matrix form i.e. 
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4. Experimental Results 

In this section, experimental results of crowd estimation by proposed multilayer neural 

network are presented. Two test image sequences are selected. One is from PETS 2009, as an 

outdoor image sequence; and the other is an actual Gangnam subway station platform image 
sequence, as an indoor image sequence. Fig. 12 shows the use of the PETS 2009 and Gangnam 

subway station platform image sequences. For each image sequence, 5 classes of crowd 

density are shown. 

 

 
(a)                            (b)                             (c)                             (d)                            (e) 

Fig. 12. 5 Crowd density classes; the top row shows images of outdoors (PETS 2009),  

the bottom row show images of indoors (the platform of Gangnam subway station in Seoul) 

(a)Very Low (b)Low (c) Medium (d) High (e) Very High 

The PETS 2009 dataset consists of 682 frames of 768 X 576 images. The number of people 

appearing in each image is manually counted. According to the number of people, the crowd 
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density of each image is labeled as one of 5 classes. The rule used for classifying the crowd 

densities of PETS 2009 dataset is as follows: very low density (from 0 to 8 people), low 
density (from 9 to 16 people), medium density (from 17 to 24 people), high density (from 25 to 

32 people), and very high density (more than 33 people). 

The numbers of frames for each class in PETS2009 are as follows: 16 frames of very low 

density, 146 frames of low density, 302 frames of medium density, 193 frames of high density, 
and 25 frames of very high density. 

The platform image sequence consists of 552 frames of 360 X 240 images. Each frame of 

the platform image sequence is labeled similarly. Firstly, we count the number of people 
appearing in each frame, and labeled crowd density using the following rule: very low density 

(from 0 to 15 people), low density (from 16 to 30 people), medium density (from 31 to 45 

people), high density (from 46 to 60 people), and very high density (more than 61 people). 
The numbers of frames for each class in the subway station are as follows: 401 images of 

very low density, 65 images of low density, 27 images of medium density, 31 images of high 

density, and 28 images of very high density. 

Approximately one half of the total frames in each image sequence is used as a training set 
to train the neural networks, while the other half is used as a test set to measure the 

performance of the proposed model. For training, the desired output value of a training 

data, ,)(ix  is computed as the ratio of the number of people in ,)(ix  to the maximum number of 

people in the given image sequence. Table 1 shows the number of frames in the training set 

and test set for each class. 

Table 1. The number of frames in each class of crowd density 

Dataset Group Very Low Low Medium High Very High Total 

PETS 

2009 

Training set 9 74 152 97 14 346 

Test set 7 72 150 96 11 336 

Subway 

Station 

Training set 201 33 14 16 15 279 

Test set 200 32 13 15 13 273 

 

The crowd density is measured in real time, and classified into 5 classes. The class of the 

estimated crowd density is displayed in the captured image in real time. 

In Fig. 13, we show 5 frames of PETS2009 dataset in the first column, the accumulated 
optical flow of each pixel in the second column, which is shown in the grey level in the image 

plane, and images labeled with estimated crowd densities in the third column. The optical flow 

is accumulated for 5 frames. Notice that the white region, which is a set of pixels with a large 
value of accumulated optical flows, becomes larger, as crowd density increases. The result of 

the estimated crowd density level is shown as the text in the bottom left corner of the image in 

the third column. 
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(a)                                               (b)                                                   (c) 

Fig. 13. Estimation of crowd density by multilayer neural network for PETS 2009 sequence 

(a) Original image frames (b) Accumulated optical flow vectors 

(c) Estimated crowd density as one of 5 classes 
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Fig. 14 shows the changes in moving area and contrast, during 336 frames in the PETS 2009 

dataset. The normalized motion cell ratio changes almost similarly with the contrast. Fig. 15 
shows the estimated crowd density, and manually measured crowd density, for each frame of 

the image sequence. Fig. 15 shows the change of the estimated crowd density according to the 

frame number, and this clearly shows the variation of crowd density in PETS 2009 image 

sequence. 
 

 
(a) Moving area 

 
(b) Contrast 

Fig. 14. Change of moving area and contrast in image sequence (PETS 2009) 

 

 

Fig. 15. Estimated crowd density (red line) and manually measured crowd density (blue line) 

for each frame of  PETS 2009 image sequence 

In Fig. 16, we show 5 frames of the platform image sequence in the first column, the 
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accumulated optical flow of each pixel in the second column, which is shown in the grey level 

in the image plane, and images labeled with the estimated crowd densities in the third column.  
 

   

   

   

   

   
(a)                                               (b)                                                   (c) 

Fig. 16. Estimation of crowd density by multilayer neural network for platform sequence  

(a) Original image frames (b) Accumulated optical flow vectors 
(c) Estimated crowd density as one of 5 classes 

The optical flow vector is accumulated for 5 frames. The accumulated optical flow vector is 
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plotted only for the ROI region, which is spatially transformed. The image plane for  the “very 

high” class is filled with white regions. The result of the estimated crowd density is shown as 
text in the top left corner of the image in the third column. 

Fig. 17 shows the changes in moving area and contrast during 273 frames in the platform 

image sequence. The normalized motion cell ratio changes almost similarly with the contrast. 

Fig. 18 shows the estimated crowd density and manually measured crowd density for each 
frame of the image sequence. Notice that the similarity of changes in the moving area with 

changes in the crowd density for the crowded frames (from frame 1 to frame 91). For the 

relatively uncrowded frames (from frame 92 to frame 273), the changes in contrast are more 
similar to changes in crowd density. Fig. 18 shows the change of the estimated crowd density 

with respect to the frame number, and this clearly shows the variation of crowd density in the 

platform image sequence. 
 

 
(a) Moving area 

 

 
(b) Contrast 

Fig. 17. Change of moving area and contrast in platform image sequence 
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Fig. 18. Estimated crowd density (red line) and manually measured crowd density(blue line) 

for each frame of platform image sequence 
 

Table 2 shows the performance of the crowd density estimation for 2 image sequences. Each 
row of the table represents a set of test image frames with a specified density level. The crowd 

density of each image in this set is estimated. Then the test images are classified, according to 

the estimated densities. The ratio of classified test images in a class to the total images in the 

test set is computed. For example, the first row of PETS2009 image sequence is a set of frames 
manually labeled “very low”. The images in this set are classified either “very low” or “low”. 

The ratio of images classified as “very low”, to total images in this set, is 91.8%.  The ratio of 

images classified as “low”, to total images in this set, is 8.2%. Thus the correct classification 
ratio becomes 91.8%. The numbers in the diagonal element of the table indicate the correct 

classification ratio for each class of images. The best result is 91.8% of correct classification 

obtained for the “very low” class and the worst result is 71.5% of correct classification 
obtained for the “high” class. It is possible to observe that all miss-classified images are 

allocated only to a neighbor class of the correct one. Some of miss classifications are expected 

since the borders between the crowd density classes are very ambiguous. For instance, an 

image with 24 people belongs to “medium” class, but it can be easily classified to “high” class. 

 Table 2. Results of crowd density estimation in PETS 2009 and platform image sequences 

Dataset 
Density 

Level 

Very 

Low 
Low Medium High 

Very 

High 

Correct 

Classification 

PETS 

2009 

Very Low 91.8% 8.2% - - - 91.8% 

Low 8.4% 81.2% 10.4% - - 81.2% 

Medium - 9.8% 83.1% 7.1% - 83.1% 

High - - 14.7% 71.5% 13.8% 71.5% 

Very High - - - 13.4% 86.6% 86.6% 

Platform 

Very Low 96.9% 3.1% - - - 96.9% 

Low 8.8% 86.8% 4.4% - - 86.8% 

Medium - 15.3% 72.8% 11.9% - 72.8% 

High - - 9.6% 74.3% 16.1% 74.3% 

Very High - - - 6.2% 93.8% 93.8% 
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In the platform image sequence, the estimation performance (correct classification ratio) drops, 

when the class of an image is “medium” or “high”. The reason for low accuracy is that the 
moving area in Fig. 16 does not increase proportionally to the crowd density. On the other 

hand, in both sequences, the estimation performs well for the extreme classes i.e. “very low” 

and “very high”. The best result is 96.9% of correct classification obtained for the “very low” 

class and the worst result is 72.8% of correct classification obtained for the “medium” class. 
All miss-classified images are allocated only to a neighbor class of the correct one. 

This result can be considered very satisfactory, when it is observed that variances of 

estimation results for each class are very small, and their means are very close to the actual 
values. Also, it shows that our proposed method is effective in handling the outdoor 

environments with dense crowd and various person sizes, and indoor environments with 

significant body occlusion with stationary crowd problems. 

 5. Conclusions 

This paper presents a multilayer neural network model, for estimation of crowd density from 
captured image frames. We also develop two effective features that do not require counting 

people, thus segmentation or edge detection of shadow regions becomes irrelevant. The major 

clue is optical flow, and is used to measure moving area in short time periods. Also, the 
coarseness of texture is measured as a complementary feature to estimate stationary crowd 

density. The neural network is trained with the PETS2009 dataset, and actual captured 

platform image sequences. Our own training sets are constructed for both image sequences. 

We labeled each frame as one of 5 classes, by counting the number of people appearing in the 
frame. The estimation accuracy for each class is measured, using test images selected from 

two image sequences. The result shows that the model can estimate crowd density successfully 

in indoor and outdoor image sequences. Another advantage of this technique is its 
independence from the apparent shape of individual pedestrians. Our proposed neural network 

model for estimation of crowd density facilitates crowd monitoring or analyzing crowd 

behavior in public areas in real time. Further research needs to be performed to develop 

additional features, to increase estimation accuracy. 
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