• 제목/요약/키워드: Optical diffraction

검색결과 1,392건 처리시간 0.027초

회절무늬를 이용한 미세물체의 특성 측정 (Characterization of Microscale Objects based on the Diffraction Pattern Analysis)

  • 강기호;전형욱;손정영;오명환
    • 한국광학회지
    • /
    • 제2권1호
    • /
    • pp.1-6
    • /
    • 1991
  • 회절현상을 이용하여 복수 미세 입자의 특성 측정을 위한 격자형의 검지기를 사용한 데이터 처리방식을 제안하고 이에 따른 광학 및 신호처리 시스템을 구성하였다. 에너지 분포함수의 최대치와 최소치를 이용하여 같은 분무기로 분무된 증류수, 알코올, 실리콘 오일, 글리세린 등의 분포를 측정했는데 최대치와 최소치에 의해 구한 입자의 크기가 서로 잘 일치하였다.

  • PDF

Poling Quality Evaluation of Periodically Poled Lithium Niobate Using Diffraction Method

  • Pandiyan, Krishnamoorthy;Kang, Yeon-Suk;Lim, Hwan-Hong;Kim, Byeong-Joo;Prakash, Om;Cha, Myoung-Sik
    • Journal of the Optical Society of Korea
    • /
    • 제12권3호
    • /
    • pp.205-209
    • /
    • 2008
  • We demonstrated a simple way of evaluating the duty cycle error in periodically polled lithium niobate(PPLN) based on the method of binary phase diffraction grating. To demonstrate this method, -Z face etched PPLN of desired periods were fabricated by the standard electric field poling technique. The etched PPLN was considered as a surface-relief binary phase grating. The diffraction patterns were recorded for different spatial locations along the length of the sample. The experimentally observed efficiencies of the diffracted orders were compared with the theoretically calculated values to estimate the duty cycle error.

큰 회절각을 가진 CGH의 위치에 대한 오차의 보정 (Correction of image distortion of CGH with a large diffraction angle)

  • 이재철;오용호;고춘수
    • 한국광학회지
    • /
    • 제16권2호
    • /
    • pp.128-132
    • /
    • 2005
  • 주기적인 홀로그램을 제작하기 위한 일반적인 CGH(computer generated hologram)의 설계 프로그램은 회절각 공간에서 설정한 모델 방정식을 사용하고 있다. 따라서 비교적 큰 회절각을 사용하는 경우 평면에서 관찰되는 이미지는 설계와 큰 차이가 생기게 된다. 이를 보정하기 위하여 이러한 오차의 발생원인을 회절이론 분석을 통하여 모델 방정식을 만들었으며 이를 실험을 통하여 검증하였다. 또한 회절각 기반의 기존 프로그램을 교정하지 않으면서 이러한 오차를 보정하기 위한 설계 방법을 제시한다.

Symmetry Exploitation of Diffraction Gratings to Enhance the Spectral Resolution

  • Lee, Eun-Seong;Lee, Jae-Yong
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.216-221
    • /
    • 2011
  • A diffraction grating is a highly symmetric optical element with a physical structure that is invariant under translational spatial movements. The translational symmetry is reflected in the fields that are diffracted from the grating. Here, we introduce a plane-parallel mirror pair onto the grating, which translates the fields through double reflections, and we describe a method of exploiting the symmetry to enhance the spectral resolution of a diffraction grating beyond the limit that is set by the number of grooves. The mirror pair creates another virtual grating beside the original one, effectively doubling the number of grooves. Addition of more mirror pairs can further increase the effective number of grooves despite the increased complexity and difficulty of experimental implementation. We experimentally demonstrate the spectral linewidth reduction by a factor of four in a neon fluorescence spectrum. Even though the geometrical restriction on the mirror deployment limits our method to a certain range of the whole spectrum, as a practical application example, a bulky spectrometer that is nearly empty inside can be made compact without sacrificing the resolution.

Nondestructive Optical Measurement of Refractive-index Profile of Graded-index Lenses

  • Lee, Byoung-Hwak;Shin, Nae-Ho;Jeong, Kwan;Park, Myoung-Jin;Kim, Byung-Gyu;Yoo, Jang-Hoon;Kim, Dae-Geun;Yun, Ki-Hyuck;Lee, Kew-Seung;Kim, Kyung-Hwan;Kim, Dae-Kyu;Park, Seung-Han
    • Journal of the Optical Society of Korea
    • /
    • 제13권4호
    • /
    • pp.468-471
    • /
    • 2009
  • We propose a simple nondestructive method to obtain refractive-index profiles of a graded-index (GRIN) light-focusing rod by means of a diffraction grating. In our proposed method, a laser beam is illuminated through a diffraction grating perpendicular to the axis of the GRIN lens and the separation between the zeroth and first-order diffraction peaks is measured and analyzed. The results demonstrate that the refractive-index profiles of commercially available GRIN lenses can be successfully reconstructed.

회절 격자 표식을 이용한 6자유도 측정 시스템의 광학적 오차 해석 및 보상 (Optical Error Analysis and Compensation of Six Degrees of Freedom Measurement System Using a Diffraction Grating Target)

  • 김종안;배의원;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.152-160
    • /
    • 2001
  • Six degrees of freedom measurement systems are required in many fields: Precision machine control. precision assembly, vibration analysis, and so on. This paper presents a new six degrees of freedom measurement system utilizing typical features of a diffraction grating. It is composed of a laser source, three position sensitive detectors, a diffraction grating target, and several optical components. Six degrees of freedom displacement is calculated kinematically from the coordinates of diffracted rays on the detectors. Optical measurement error was caused by the fact that a laser source had a Gaussian intensity distribution. This error was analyzed and compensated using simple equations. The performance of the compensation equation was verified in the experiment. The experimental results showed that the compensation equation could reduce the optical measurement error remarkably and the error in six degrees of freedom measurement less than $\pm$10$\mu$m for translation and $\pm$0.012$^{\circ}$for rotation.

  • PDF

광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석 (Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis)

  • 김종안;김재완;박병천;강주식;엄태봉
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제18권5호
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.