DOI QR코드

DOI QR Code

Nondestructive Optical Measurement of Refractive-index Profile of Graded-index Lenses

  • Lee, Byoung-Hwak (Department of Physics and Chemistry, Korea Military Academy) ;
  • Shin, Nae-Ho (Department of Physics and Chemistry, Korea Military Academy) ;
  • Jeong, Kwan (Department of Physics and Chemistry, Korea Military Academy) ;
  • Park, Myoung-Jin (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kim, Byung-Gyu (Department of Physics and Chemistry, Korea Military Academy) ;
  • Yoo, Jang-Hoon (DMC R&D Center, Samsung Electronics Co., Ltd) ;
  • Kim, Dae-Geun (Institute of Physics and Applied Physics, Yonsei University) ;
  • Yun, Ki-Hyuck (Institute of Physics and Applied Physics, Yonsei University) ;
  • Lee, Kew-Seung (Institute of Physics and Applied Physics, Yonsei University) ;
  • Kim, Kyung-Hwan (Institute of Physics and Applied Physics, Yonsei University) ;
  • Kim, Dae-Kyu (Institute of Physics and Applied Physics, Yonsei University) ;
  • Park, Seung-Han (Institute of Physics and Applied Physics, Yonsei University)
  • 투고 : 2009.05.25
  • 심사 : 2009.09.25
  • 발행 : 2009.12.25

초록

We propose a simple nondestructive method to obtain refractive-index profiles of a graded-index (GRIN) light-focusing rod by means of a diffraction grating. In our proposed method, a laser beam is illuminated through a diffraction grating perpendicular to the axis of the GRIN lens and the separation between the zeroth and first-order diffraction peaks is measured and analyzed. The results demonstrate that the refractive-index profiles of commercially available GRIN lenses can be successfully reconstructed.

키워드

참고문헌

  1. C. G. Reino, M. V. Perez, and C. Bao, Gradient-index Optics (Springer, Berlin, Germany, 2002).
  2. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035-1038 (1980). https://doi.org/10.1364/AO.19.001035
  3. Y. Koike, Y. Takezawa, and Y. Ohtsuka, “New interfacialgel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt. 27, 486-491 (1988). https://doi.org/10.1364/AO.27.000486
  4. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33, 2575-2577 (2008). https://doi.org/10.1364/OL.33.002575
  5. H. Kobayashi and T. Horiuchi, “Novel projection exposure system using gradient-index lens array,” Jpn. J. Appl. Phys. 47, 5702-5707 (2008). https://doi.org/10.1143/JJAP.47.5702
  6. F. Okano, M. Kobayashi, J. Arai, and M. Okui, “Depth control GRIN lens array for integral photography,” Proc. SPIE 5243, 30-41 (2003). https://doi.org/10.1117/12.510932
  7. S. Janz, B. Lamontagne, A. Delage, A. Bogdanov, D. X. Xu, and K. P. Yap, “Single layer a-Si GRIN waveguide coupler with lithographically defined facets,” in Proc. 2nd IEEE International Conference on Group IV Photonics (Antwerp, Belgium, Sep. 2005), pp. 129-131. https://doi.org/10.1109/GROUP4.2005.1516427
  8. S. Rios, R. Srivastava, and C. G. Reino, “Coupling of single-mode fibers to single-mode GRIN waveguides by butt-joining,” Opt. Comm. 119, 517-522 (1995). https://doi.org/10.1016/0030-4018(95)00357-E
  9. S. C. J. Lee, F. Breyer, S. Randel, B. Spinnler, I. L. L. Polo, D. van den Borne, J. Zeng, H. P. A. van den Boom, and A. M. J. Koonen, “Performance of maximum likelihood sequence estimation in 10 Gb/s transmission systems with polymer optical fiber,” in Proc. Symposium IEEE/LEOS Benelux Chapter (Eindhoven, Netherlands, Nov. 2006), pp. 17-19.
  10. I. T. Monroy, H. P. A. vd Boom, A. M. J. Koonen, G. D. Khoe, Y. Watanabe, Y. Koike, and T. Ishigure, “Data transmission over polymer optical fibers,” Optical Fiber Technology 9, 159-171 (2003). https://doi.org/10.1016/S1068-5200(03)00006-3
  11. D. G. Kim, S. Y. Woo, D. K. Kim, T. Y. Hwang, D. Y. Kim, and S.-H. Park, “Generation of 1.5 Gbps pseudo-random binary sequence optical signals by using a gain switched Fabry-Perot semiconductor laser,” J. Opt. Soc. Korea 9, 103-106 (2005). https://doi.org/10.3807/JOSK.2005.9.3.103
  12. W. C. Chen, Y. Chang, and J. P. Hsu, “Theoretical analysis on a multilayer coextrusion process for preparing gradient-index polymer optical fibers,” J. Phys. Chem. B 103, 7584-7590 (1999). https://doi.org/10.1021/jp9911550
  13. P. L. Chu, “Nondestructive measurement of index profile of an optical-fibre preform,” Electron. Lett. 13, 736-738 (1977). https://doi.org/10.1049/el:19770520
  14. L. S. Watkins, “Laser beam refraction transversely through a graded-index preform to determine refractive-index ratio and gradient profile,” Appl. Opt. 18, 2214-2222 (1979). https://doi.org/10.1364/AO.18.002214
  15. H. H. Lim, M. S. Kwon, H. J. Choi, B. J. Kim, and M. Cha, “Measurement of refractive index of solid medium by critical angle method when air gap is present,” J. Opt. Soc. Korea 12, 210-214 (2008). https://doi.org/10.3807/JOSK.2008.12.3.210
  16. W. E. Martin, “Refractive index profile measurements of diffused optical waveguides,” Appl. Opt. 13, 2112-2116 (1974). https://doi.org/10.1364/AO.13.002112
  17. J. Stone and R. M. Derosier, “Elimination of errors due to sample polishing in refractive index profile measurements by interferometry,” Rev. Sci. Instru. 47, 885-887 (1976). https://doi.org/10.1063/1.1134770
  18. M. E. Marhic, P. S. Ho, and M. Epstein, “Nondestructive refractive-index profile measurements of clad optical fibers,” Appl. Phys. Lett. 26, 574-575 (1975). https://doi.org/10.1063/1.87980
  19. M. J. Saunders and W. B. Gardner, “Nondestructive interferometric measurement of the delta and alpha of clad optical fibers,” Appl. Opt. 16, 2368-2371 (1977). https://doi.org/10.1364/AO.16.002368
  20. Y. Ohtsuka and Y. Shimizu, “Radial distribution of the refractive index in light-focusing rods: determination using interphako interference microscopy,” Appl. Opt. 16, 1050-1053 (1979). https://doi.org/10.1364/AO.16.001050
  21. Y. Kokubun and K. Iga, “Refractive-index profile measurement of preform rods by a transverse differential interferograms,” Appl. Opt. 19, 846-851 (1980). https://doi.org/10.1364/AO.19.000846
  22. K. S. R. Krishna and A. Sharma, “Chromatic aberrations of radial gradient-index lenses. II. Selfoc lenses,” Appl. Opt. 35, 1037-1040 (1996). https://doi.org/10.1364/AO.35.001037
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Book Co., Singapore, 1996), Chapter 4.
  24. F. G. Smith, T. A. King, and D. Wilkins, Optics and Photonics (John Wiley & Sons, Ltd., West Sussex, UK, 2007), Chapter 2.
  25. S. P. Morgan, “General solution of the Luneberg lens problem,” J. Appl. Phys. 29, 1358-1368 (1958). https://doi.org/10.1063/1.1723441
  26. Gradient-index lenses, “Gradient-index lenses, antireflection coated, for $\lambda$ = 632.8nm,” (Product number, 06 LGD 111), http://www.mellesgriot.com/pdf/0015.16-15.20.pdf.

피인용 문헌

  1. Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope vol.15, pp.1, 2011, https://doi.org/10.3807/JOSK.2011.15.1.009
  2. A Quantitative Study of the Quality of Deconvolved Wide-field Microscopy Images as Function of Empirical Three-dimensional Point Spread Functions vol.15, pp.3, 2011, https://doi.org/10.3807/JOSK.2011.15.3.252