• Title/Summary/Keyword: Optical center

Search Result 2,901, Processing Time 0.046 seconds

Various functionalities Based on Semiconductor Optical Amplifer for All-Optical Information Processing

  • Lee, Seok;Kim, Jae-Hun;Kim, Young-Il;Byun, Young-Tae;Jhon, Young-Min;Woo, Deok-Ha;Kim, Sun-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.165-171
    • /
    • 2002
  • By using a semiconductor optical amplifier and a cross-phase modulation wavelength converter, fundamental all-optical logic gates including NOT, AND, NOR, XOR, and XNOR have been newly proposed and implemented. Realization of these all-optical logic gates will bring up not only all-optical networks but also all-optical computing and signal processing.

5 Gb/s all-optical XOR gate by using semiconductor optical amplifier (Semiconductor Optical Amplifier를 이용한 5 Gb/s전광 XOR논리소자)

  • Kim, Jae-Hun;Byun, Young-Tae;Jhon, Young-Min;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.1
    • /
    • pp.84-87
    • /
    • 2002
  • By using SOA (Semiconductor Optical Amplifier), all-optical XOR gate has been demonstrated at 5 Gb/s in RZ format. Firstly, Boolean AB-and Boolean AB have been obtained. Then, Boolean AB and Boolean AB have been combined to achieve the all-optical XOR gate, which has Boolean logic of AB+AB.

Design of a See-through Off-Axis Head-Mounted-Display Optical System with an Ellipsoidal Surface

  • Wang, Junhua;Zhou, Qing;Chen, Jie;Hou, Lexin;Xu, Min
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.280-285
    • /
    • 2018
  • A new method to design a see-through off-axis head-mounted-display (OA-HMD) optical system with an ellipsoidal surface is proposed, in which a tilted ellipsoidal surface is used as the combiner, which yields the benefits of easier fabrication and testing compared to a freeform surface. Moreover, we realize a coaxial structure in the relay lens group, which is simple and has looser tolerance requirements, thus making assembly easier. The OA-HMD optical system we realize has a simple structure and consists of a combiner and 7 pieces of coaxial relay lenses. It has a $48^{\circ}{\times}36^{\circ}$ field of view (FOV) and 12-mm exit pupil diameter.

10 Gb/s All-optical half adder by using semiconductor optical amplifier based devices (반도체 광증폭기에 기반을 둔 10 Gb/s 전광 반가산기)

  • Kim, Jae-Hun;Jhon, Young-Min;Byun, Young-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.421-424
    • /
    • 2002
  • By using SOA (Semiconductor Optical Amplifier) based devices, an all-optical half adder has been successfully demonstrated at 10 Gb/s. All-optical XOR and AND gates are utilized to realize SUM and CARRY. Since SUM and CARRY have been simultaneously realized to form the all-optical half adder, complex calculation and signal processing can be achieved.

Influence of Atmospheric Turbulence Channel on a Ghost-imaging Transmission System

  • Wang, Kaimin;Wang, Zhaorui;Zhang, Leihong;Kang, Yi;Ye, Hualong;Hu, Jiafeng;Xu, Jiaming
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • We research a system of compressed-sensing computational ghost imaging (CSCGI) based on the intensity fluctuation brought by turbulence. In this system, we used the gamma-gamma intensity-fluctuation model, which is commonly used in transmission systems, to simulate the CSCGI system. By setting proper values of the parameters such as transmission distance, refractive-index structure parameter, and sampling rates, the peak signal-to-noise ratio (PSNR) performance and bit-error rate (BER) performance are obtained to evaluate the imaging quality, which provides a theoretical model to further research the ghost-imaging algorithm.

All-optical Data Extraction Based on Optical Logic Gates (반도체 광 증폭기를 이용한 전광 데이터 추출)

  • Lee, Ji Sok;Jung, Mi;Lee, Hyuk Jae;Lee, Taek Jin;Jhon, Young Min;Lee, Seok;Woo, Deok Ha;Lee, Ju Han;Kim, Jae Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.143-146
    • /
    • 2012
  • All-optical data extraction, one of the key technologies for all-optical computing and optical communication to perform add-drop, packet switching, and data reset, etc., is experimentally demonstrated by using cross-gain modulation (XGM) of semiconductor optical amplifiers (SOAs). Also, all-optical data extraction based on numerical simulation is performed by using the VPI simulation tool. In this paper, the suggested optical system based on SOAs shows the potential for high speed, and highly integrable and low power optical data computing.

2.5 Gbit/s all-optical GR logic gate using semiconductor optical amplifiers (반도체 광증폭기(SOA)를 이용한 2.5 Gbit/s 전광 OR 논리 게이트)

  • Byun, Young-Tae;Kim, Jae-Hun;Jhon, Young-Min;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.151-154
    • /
    • 2002
  • All-optical OR logic gate is realized by use of gain saturation and wavelength conversion in the semiconductor optical amplifiers (SOA). It is operated by the nonlinearity of the SOA gain and hence to obtain the sufficient gain saturation of the SOA, pump signals are amplified by an Er-doped fiber amplifier (EDFA) at the input of the SOA. The operation characteristics of all-optical OR logic gate are successfully measured at 2.5 Gbit/s.

10 Gb/s all optical AND gate by using semiconductor optical amplifiers (반도체 광증폭기를 이용한 10 Gb/s 전광 AND논리소자)

  • Kim, Jae-Hun;Kim, Byung-Chae;Byun, Young-Tae;Jhon, Young-Min;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.166-168
    • /
    • 2003
  • By using gain saturation of semiconductor optical amplifiers (SOAs), an all-optical AND gate at 10 Gb/s has been successfully demonstrated. Firstly, Boolean (equation omitted) has been obtained using the first SOA with signal B and clock injection. Then, the all-optical AND gate is achieved using the second SOA with signals A and (equation omitted) injection.