• Title/Summary/Keyword: Optical Probe

Search Result 597, Processing Time 0.026 seconds

Adsorption Stabilization of $TiC_{2}$ Particles in Water Soluble Block Copolymers (수용성 블록공중합물에서 산화티탄 분말의 흡착 안정화)

  • Kwan, Soun-Il;Jeong, Hwan-Kyeong;Choi, Seung-Ok;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.118-126
    • /
    • 2001
  • Micelle formation and adsorption at the $Ti0_{2}$ interface of a series of polystyrene-polythylene oxide(PS-PEO) block copolymer in aqueous solution was studied using fluorescence probing and small-angle X-ray methods. Further, the stability of aqueous $Ti0_{2}$ dispersion in the presence of copolymer was investigated by microelectrophoresis, optical density and sedimentation measurements. The dissolution of pyrene as fluorescent probe in aqueous surfactant solution leads to a slow decrease of the $I_{1}/I_{3}$ ratio, as the copolymer concentration increase; $I_{1}$ and $I_{3}$ are respectively the intensities of the first and third vibrionic peaks in the pyrene fluorescence emission. The behaviour was due to the characteristics of the copolymers and/or to the copolymer association efficiency in water. Moreover, the adsorption at the plateau level increases with decreasing PEO until chain length. The zeta potential of $TiO_{2}$ particles decreases with increasing copolymer concentration and reaches a plateau value. Finally, stabilization using block copolymers was more effective with samples having higher weight fractions of PS block.

Dry etching properties of PZT thin films in $BCl_3/N_2$ plasma ($BCl_3/N_2$ 유도결합 플라즈마로 식각된 PZT 박막의 식각 특성)

  • Koo, Seong-Mo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.183-186
    • /
    • 2004
  • The dry etch behavior of PZT thin films was investigated in $BCl_3/N_2$ plasma. The experiments were carried out with measuring etch rates and selectivities of PZT to $SiO_2$ as a function of gas concentration and input rf power, chamber pressure. The maximum etch rate was 126 nm/min when 30% $N_2$ was added to $BCl_3$ chemistry. Also, as input rf power increases, the etch rate of PZT thin films was increased. Langmuir probe measurement showed the noticeable influence of $BCl_3/N_2$ mixing ratio on electron temperature and electron density as input rf power increased. The variation of Cl radical density as plasma parameters changed was examined by Optical Emission Spectroscopy (OES) analysis. According to X-ray diffraction (XRD) analysis, PZT thin films were damaged in plasma and an increase in (100), (200) and (111) phases showed the improvement in structure of the PZT thin films after the $O_2$ annealing process.

  • PDF

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

Properties of Carbon Pastes Prepared with Mixing Ratios of Nano Carbon and Graphite Flakes

  • Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.615-619
    • /
    • 2018
  • To produce carbon electrodes for use in perovskite solar cells, electrode samples are prepared by mixing various weight ratios of 35 nm nano carbon(NC) and $1{\mu}m$ graphite flakes(GF), GF/(NC+GF) = 0, 0.5, 0.7, and 1, in chlorobenzene(CB) solvent with a $ZrO_2$ binder. The carbon electrodes are fabricated as glass/FTO/carbon electrode devices for microstructure characterization using transmission electron microscopy, optical microscopy, and a field emission scanning electron microscopy. The electrical characterization is performed with a four-point probe and a multi tester. The microstructure characterization shows that an electrode with excellent attachment to the substrate and no surface cracks at weight ratios above 0.5. The electrical characterization results show that the sheet resistance is <$70{\Omega}/sq$ and the interface resistance is <$70{\Omega}$ at weight ratios of 0.5 and 0.7. Therefore, a carbon paste electrode with microstructure and electrical properties similar to those of commercial carbon electrodes is proposed with an appropriate mixing ratio of NC and GF containing a CB solvent and $ZrO_2$.

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

High Temperature Oxidation Behavior of Cr-Mo Low Alloy Steel According to Atmospheric Pressures in Humid Air (Humid air 분위기로부터 대기 압력에 따른 Cr-Mo 저합금강의 고온 산화 거동)

  • Kwon, Gi-hoon;Park, Hyunjun;Lee, Young-Kook;Moon, Kyoungil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.246-254
    • /
    • 2022
  • The high-temperature oxidation behavior of Cr-Mo steel AISI 4115 in air at different temperatures (600, 850, 950℃) for 120 min was studied by mass gain analysis, phase analysis (optical microscopy, electron probe micro-analysis, x-ray diffraction) and hardness measurement of each iron oxide-phase. The oxidation scales that formed on oxidation process consisted outer layer (Hematite), middle layer (Magnetite) and the inner layer (Chromite). In the case of 850 and 950℃, the oxidation mass gain per unit area of AISI 4115 steel increased according to the logarithmic rate as atmospheric pressure increased. Especially, It has been observed that with an increase in the atmospheric pressure at 600℃, the oxidation mass gain per unit area changed from a linear to logarithmic relationship.

Investigating the sensitivity of the clumpy torus model parameters to the IR data in QSOs

  • Kim, HyeongHan;Martinez-Paredes, Mariela;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.73.3-73.3
    • /
    • 2019
  • The AGN unification model suggested the presence of obscuring material, a dusty torus, to explain the various types of AGN. IR SED model fitting is a crucial tool to probe the structure and properties of the dusty torus. We use a sample of 16 local quasi-stellar objects in Martinez-Paredes et al. (2017) with obtained NIR and MIR high-angular resolution (~0.3") imaging data from EMIR, CIRCE and CanariCam on the 10.4-m Gran Telescopio CANARIAS (GTC) while 4 objects have NIR high-angular resolution photometry from NICMOS/HST from the literature. The unresolved NIR emission from the NIR image analysis and low-resolution Spitzer/IRS spectra are used to construct NIR-MIR SEDs covering a larger spectral range. We investigate the sensitivity of the geometrical (e.g. viewing angle) and physical parameters (e.g. optical depth) of the clumpy dusty torus model of Nenkova et al. and the clumpy disk+outflow model of Hoenig et al. We aim to investigate the minimal dataset needed to well constrain the parameters of the models and derive the properties of the dusty torus. These results will allow us to plan future observations for a larger sample of high luminosity AGNs with the James Webb Space Telescope and the Giant Magellan Telescope.

  • PDF

Internal structure and kinematics of the massive star forming region W4

  • Lim, Beomdu;Yun, Hyeong-Sik;Rauw, Gregor;Naze, Yael;Kim, Jinyoung S.;Lee, Jeong-Eun;Hwang, Narae;Park, Byeong-Gon;Park, Sunkyung;Sung, Hwankyung;Kim, Seulgi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • OB associations are young stellar systems on a few tens to a hundred parsec scale, and many of them are composed of multiple substructures. It is suggested that some hints about their formation process are probably imprinted on structural features and internal kinematics. In this context, we study the massive star forming region W4 in the Cassiopeia OB6 association using the Gaia proper motion data and high-resolution optical spectra taken from Hectochelle on MMT. We probe the structure and internal kinematics of W4 to trance its formation process. Several nonmembers with different kinematic properties are excluded in our sample. Some of them may be young stellar population spread over a large area of the Perseus spiral arm given their wide spatial distribution over 50 parsecs. W4 is composed of an central open cluster (IC 1805) and an extended stellar component. Their global expansion patterns are detected in stellar proper motion. In this presentation, we will further discuss the formation process of W4, based on the velocity dispersions of stars comprising these substructure.

  • PDF

Development of a low energy ion irradiation system for erosion test of first mirror in fusion devices

  • Kihyun Lee;YoungHwa An;Bongki Jung;Boseong Kim;Yoo kwan Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.70-77
    • /
    • 2024
  • A low energy ion irradiation system based on the deuterium arc ion source with a high perveance of 1 µP for a single extraction aperture has been successfully developed for the investigation of ion irradiation on plasma-facing components including the first mirror of plasma optical diagnostics system. Under the optimum operating condition for mirror testing, the ion source has a beam energy of 200 eV and a current density of 3.7 mA/cm2. The ion source comprises a magnetic cusp-type plasma source, an extraction system, a target system with a Faraday cup, and a power supply control system to ensure stable long time operation. Operation parameters of plasma source such as pressure, filament current, and arc power with D2 discharge gas were optimized for beam extraction by measuring plasma parameters with a Langmuir probe. The diode electrode extraction system was designed by IGUN simulation to optimize for 1 µP perveance. It was successfully demonstrated that the ion beam current of ~4 mA can be extracted through the 10 mm aperture from the developed ion source. The target system with the Faraday cup is also developed to measure the beam current. With the assistance of the power control system, ion beams are extracted while maintaining a consistent arc power for more than 10 min of continuous operation.

Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

  • Park, Maru;Jo, Jung Hyun;Cho, Sungki;Choi, Jin;Kim, Chun-Hwey;Park, Jang-Hyun;Yim, Hong-Suh;Choi, Young-Jun;Moon, Hong-Kyu;Bae, Young-Ho;Park, Sun-Youp;Kim, Ji-Hye;Roh, Dong-Goo;Jang, Hyun-Jung;Park, Young-Sik;Jeong, Min-Ji
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.