DOI QR코드

DOI QR Code

High Temperature Oxidation Behavior of Cr-Mo Low Alloy Steel According to Atmospheric Pressures in Humid Air

Humid air 분위기로부터 대기 압력에 따른 Cr-Mo 저합금강의 고온 산화 거동

  • Kwon, Gi-hoon (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Park, Hyunjun (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University) ;
  • Moon, Kyoungil (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology)
  • 권기훈 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 박현준 (한국생산기술연구원 친환경열표면처리연구부문) ;
  • 이영국 (연세대학교 신소재공학과) ;
  • 문경일 (한국생산기술연구원 친환경열표면처리연구부문)
  • Received : 2022.07.08
  • Accepted : 2022.09.05
  • Published : 2022.09.30

Abstract

The high-temperature oxidation behavior of Cr-Mo steel AISI 4115 in air at different temperatures (600, 850, 950℃) for 120 min was studied by mass gain analysis, phase analysis (optical microscopy, electron probe micro-analysis, x-ray diffraction) and hardness measurement of each iron oxide-phase. The oxidation scales that formed on oxidation process consisted outer layer (Hematite), middle layer (Magnetite) and the inner layer (Chromite). In the case of 850 and 950℃, the oxidation mass gain per unit area of AISI 4115 steel increased according to the logarithmic rate as atmospheric pressure increased. Especially, It has been observed that with an increase in the atmospheric pressure at 600℃, the oxidation mass gain per unit area changed from a linear to logarithmic relationship.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부(MOTIE)와 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구입니다(No. 20019183).

References

  1. R. K. Raman, A. AL-Mazrouee : Metall. Mater. Trans, 38 (2007) 1750. https://doi.org/10.1007/s11661-007-9244-0
  2. S. P. Hong, S. I. Kim : Mater. Charact, 115 (2016) 8. https://doi.org/10.1016/j.matchar.2016.03.013
  3. L. Xu, L. Chen, G. Chen, M. Wang : Vacuum, 147 (2018) 8. https://doi.org/10.1016/j.vacuum.2017.10.017
  4. M. Badaruddin, Sugiyanto, H. Wardono : Int. J. Fatigue, 125 (2019) 406. https://doi.org/10.1016/j.ijfatigue.2019.04.020
  5. Y. Sakaida, S. Yamashita, M. Manzanka : Mater. Sci. Forum, 681 (2011) 346. https://doi.org/10.4028/www.scientific.net/MSF.681.346
  6. Y. Nishiyama, N. Otsuka, T. Nishizawa : Corrosion, 59 (2003) 688. https://doi.org/10.5006/1.3277598
  7. T. Amano, M. Okazaki, Y. Takezawa, A. Shiino : Mater. Sci. Forum, 52 (2006) 469.
  8. S. H. Park, S. T. Hong, T. W. Kim, I. S. Chung : J. Kor. Soc. Heat Treat. 13 (2000) 158.
  9. S. Y. Bae, H. G. Kang, H. S. Yun, C. W. Kim, D. B. Lee : J. Mater. Sci, 499 (2009) 262.
  10. Z. Azari, M. Abbadi, H. Moustabchir, M. Lebienvenu : Int. J. Fatigue, 30 (2008) 517. https://doi.org/10.1016/j.ijfatigue.2007.03.011
  11. N. S. Cheruvu : Metall. Mater. Trans, 20 (1989) 87.
  12. A. Fry, S. Osgerby, M. Wright : MATC A, 90 (2002) 1.
  13. P. Mathiazhagan, A. S. Khanna : Arab. J. Sci, 34 (2009), 159.
  14. A. S. Khanna : High temperature corrosion. World Scientific, 13 (2016) 1. https://doi.org/10.1155/2016/3934289
  15. I. Saeki, T. Ogama, R. Furuichi, S. Kikkawa : Corros. Sci. Tech, 2 (2003) 225.
  16. A. Duval, F. Miserque, M. Tabarant, J. P. Nogier : Oxid. Met, 74 (2010) 215. https://doi.org/10.1007/s11085-010-9207-5
  17. D. B. Lee : Korean J. Met. Mater, 52 (2014) 899. https://doi.org/10.3365/KJMM.2014.52.11.899
  18. D. J. Young : Elsevier, Volume 1, High temperature oxidation and corrosion of metals, pp. 163-205 (2008).
  19. S. H. Bak, M. J. Kim, J. H. Lee, S. J. Bong : J. Kor. Ceram. Soc, 48 (2011) 57. https://doi.org/10.4191/KCERS.2011.48.1.057
  20. T. Amano, M. Okazaki, Y. Takezawa, A. Shiino : Mater. Sci. Forum, 522 (2006) 469.
  21. M. Takeda, T. Onishi, S. Nakakubo, S. Fujimoto : Metall. Mater. Trans, 59 (2009) 2242.
  22. L. F. Dobrzhinetskaya, R. Wirth, J. S. Yang : Proc. Natl. Acad. Sci. 106 (2009) 1923.
  23. M. C. Demizieux, C. Desgranges, L. Martinelli : Oxid. Met. 91 (2019) 191. https://doi.org/10.1007/s11085-018-9873-2