Browse > Article
http://dx.doi.org/10.12656/jksht.2022.35.5.246

High Temperature Oxidation Behavior of Cr-Mo Low Alloy Steel According to Atmospheric Pressures in Humid Air  

Kwon, Gi-hoon (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology)
Park, Hyunjun (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology)
Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
Moon, Kyoungil (Heat & Surface Technology R&D Department, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.35, no.5, 2022 , pp. 246-254 More about this Journal
Abstract
The high-temperature oxidation behavior of Cr-Mo steel AISI 4115 in air at different temperatures (600, 850, 950℃) for 120 min was studied by mass gain analysis, phase analysis (optical microscopy, electron probe micro-analysis, x-ray diffraction) and hardness measurement of each iron oxide-phase. The oxidation scales that formed on oxidation process consisted outer layer (Hematite), middle layer (Magnetite) and the inner layer (Chromite). In the case of 850 and 950℃, the oxidation mass gain per unit area of AISI 4115 steel increased according to the logarithmic rate as atmospheric pressure increased. Especially, It has been observed that with an increase in the atmospheric pressure at 600℃, the oxidation mass gain per unit area changed from a linear to logarithmic relationship.
Keywords
High-temperature oxidation; Scale; Mass gain; AISI 4115 steel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Badaruddin, Sugiyanto, H. Wardono : Int. J. Fatigue, 125 (2019) 406.   DOI
2 R. K. Raman, A. AL-Mazrouee : Metall. Mater. Trans, 38 (2007) 1750.   DOI
3 L. Xu, L. Chen, G. Chen, M. Wang : Vacuum, 147 (2018) 8.   DOI
4 Y. Nishiyama, N. Otsuka, T. Nishizawa : Corrosion, 59 (2003) 688.   DOI
5 A. Fry, S. Osgerby, M. Wright : MATC A, 90 (2002) 1.
6 P. Mathiazhagan, A. S. Khanna : Arab. J. Sci, 34 (2009), 159.
7 I. Saeki, T. Ogama, R. Furuichi, S. Kikkawa : Corros. Sci. Tech, 2 (2003) 225.
8 A. Duval, F. Miserque, M. Tabarant, J. P. Nogier : Oxid. Met, 74 (2010) 215.   DOI
9 S. H. Bak, M. J. Kim, J. H. Lee, S. J. Bong : J. Kor. Ceram. Soc, 48 (2011) 57.   DOI
10 M. Takeda, T. Onishi, S. Nakakubo, S. Fujimoto : Metall. Mater. Trans, 59 (2009) 2242.
11 L. F. Dobrzhinetskaya, R. Wirth, J. S. Yang : Proc. Natl. Acad. Sci. 106 (2009) 1923.
12 S. Y. Bae, H. G. Kang, H. S. Yun, C. W. Kim, D. B. Lee : J. Mater. Sci, 499 (2009) 262.
13 S. P. Hong, S. I. Kim : Mater. Charact, 115 (2016) 8.   DOI
14 Y. Sakaida, S. Yamashita, M. Manzanka : Mater. Sci. Forum, 681 (2011) 346.   DOI
15 S. H. Park, S. T. Hong, T. W. Kim, I. S. Chung : J. Kor. Soc. Heat Treat. 13 (2000) 158.
16 Z. Azari, M. Abbadi, H. Moustabchir, M. Lebienvenu : Int. J. Fatigue, 30 (2008) 517.   DOI
17 N. S. Cheruvu : Metall. Mater. Trans, 20 (1989) 87.
18 T. Amano, M. Okazaki, Y. Takezawa, A. Shiino : Mater. Sci. Forum, 522 (2006) 469.
19 A. S. Khanna : High temperature corrosion. World Scientific, 13 (2016) 1.   DOI
20 D. B. Lee : Korean J. Met. Mater, 52 (2014) 899.   DOI
21 M. C. Demizieux, C. Desgranges, L. Martinelli : Oxid. Met. 91 (2019) 191.   DOI
22 D. J. Young : Elsevier, Volume 1, High temperature oxidation and corrosion of metals, pp. 163-205 (2008).
23 T. Amano, M. Okazaki, Y. Takezawa, A. Shiino : Mater. Sci. Forum, 52 (2006) 469.