• Title/Summary/Keyword: Optical Probe

Search Result 597, Processing Time 0.03 seconds

Precessional Motion of Ferromagnetic Pt/Co/Pt Thin Film with Perpendicular Magnetic Anisotropy (수직 자기 이방성을 갖는 Pt/Co/Pt 자성 박막의 세차 운동 측정 및 분석)

  • Yun, Sang-Jun;Lee, Jae-Chul;Choe, Sug-Bong;Shin, Kyoung-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.204-207
    • /
    • 2011
  • We developed a time-resolved magneto-optical Kerr effect microscope system to investigate ultrafast magnetization dynamics. Based on the pump-probe method, 0.1-ps time resolution was achieved by use of a fs Ti:Sapphire laser. The magnetization dynamics was then measured on Pt/Co/Pt thin films with various Co thicknesses. All the samples exhibited ultrafast demagnetization within a few ps by direct heating of pump laser. Some thicker samples showed precessional motion of magnetization, from which the Gilbert damping constant was determined based on the Landau-Lifshitz-Gilbert equation.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

Application of black phosphorus nanodots to live cell imaging

  • Shin, Yong Cheol;Song, Su-Jin;Lee, Yu Bin;Kang, Moon Sung;Lee, Hyun Uk;Oh, Jin-Woo;Han, Dong-Wook
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.352-359
    • /
    • 2018
  • Background: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. Methods: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. Results: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. Conclusions: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

Effect of Tension-Test Temperature on Fracture Behavior and Mechanical Properties in STS/Al/Cu Clad Materials (STS/Al/Cu 클래드재의 파괴거동 및 기계적 물성에 미치는 인장시험 온도의 영향)

  • Bae, Dong-Hyun;Choi, Young-Jun;Chung, Won-Sub;Bae, Dong-Su;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.811-818
    • /
    • 2009
  • In order to meet increasingly complex and rigorous technical specifications, extensive effort has been devoted to fabricate clad materials with multi-layered metal plates. In this study, novel stainless steel/aluminum/copper (STS/Al/Cu) three-ply clad materials were fabricated by a hot rolling process for cookware applications. The effect of the testing temperature on the mechanical properties of the clad materials and on each component metal was investigated during the tensile tests. The interface properties of the clad materials were also examined by optical microscopy (OM) and an electron probe micro-analyzer (EPMA). The best mechanical and interfacial properties for a warm working process were found in a sample annealed at a temperature of $300^{\circ}C$. For the sample annealed at $400^{\circ}C$, the results of the tensile test indicated that interface delamination occurred only in the region of the Al/Cu interfaces. This was due to the formation of the thick and brittle intermetallic compound of $Al_2Cu$ in the Al/Cu interface. In contrast, no interface delamination was observed in the STS/Al interface, most likely due to its strong bond strength.

Fit Performance Comparison Between OPC and CNC Based on Number of Ambient Aerosol Particles (시험환경 내 입자수에 대한 OPC, CNC 장비 간 마스크 밀착 성능비교)

  • Seo, Hyekyung;Jang, Hoyeong;Shim, Sua;Kim, Huiju;Han, Donhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2022
  • Objectives: Fit performance may vary depending on the ambient aerosol number and ratio in respective test environment. Although several instrument can measure it, they differ with respect to the measurement principle and the range of ambient aerosols collected to calculate the fit factor. Methods: In this study, the fit performance between a condensation nuclei counter(CNC) and an optical particle counter(OPC) was compared according to ambient aerosol number concentration, and evaluated consistency. One type respirators(N95 masks) was worn by 50 participants PortaCount®(Pro+ 8038) and MT®(05U) were connected with one probe to one mask, and Fit Factors(FFs) were measured simultaneously. Results: The interclass correlation coefficient of the fit factor and ambient aerosol number, as measured by the two instrument, was 0.82 and 0.79, respectively, indicating a high consistency level. On the other hand there was a significant correlation between the successful test performance of the OPC instrument and the ambient aerosol number. Conclusions: The test was passed with the CNC and OPC instruments when the ambient aerosol number was 635-3,332 particles/cm3 and 368-1,976 particles/cm3, respectively. Thus, the ideal ambient aerosol number of particles differed between the two instrument.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target (Ti-Mo 코어-쉘 분말 제조 및 소결 특성 연구)

  • Won Hee Lee;Chun Woong Park;Heeyeon Kim;Yuncheol Ha;Jongmin Byun;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400℃. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.

Effects of Hole Transport Layer Using Au-ionic Doping SWNT on Efficiency of Organic Solar Cells

  • Min, Hyung-Seob;Jeong, Myung-Sun;Choi, Won-Kook;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.434-434
    • /
    • 2012
  • Despite recent efforts for fabricating flexible transparent conducting films (TCFs) with low resistance and high transmittance, several obstacles to meet the requirement of flexible displays still remain. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. Recently, it has been demonstrated that acid treatment is an efficient method for surfactant removal. However, the treatment has been reported to destroy most SWNT. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance by Au-ionic doping treatment on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effects of hole transport interface layer using Au-ionic doping SWNT on the performance of organic solar cells were investigated.

  • PDF

Optical Property of Zinc Oxide Thin Films Prepared by Using a Metal Naphthenate Precursor (금속 나프텐산염을 이용하여 제조한 ZnO 박막의 광학적 특성)

  • Lim, Y.M.;Jung, J.H.;Jeon, K.O.;Jeon, Y.S.;Hwang, K.S.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.3
    • /
    • pp.193-203
    • /
    • 2005
  • Highly c-axis oriented nanocrystalline ZnO thin films on silica glass substrates were prepared by spin coating-pyrolysis process with a zinc naphthenate precursor. Only the XRD intensity peak of (002) phase was observed for all samples. With an increase in heat treatment temperature, the peak intensity of (002) phase increases. No significant aggregation of particle was present. From scanning probe microscopy analyses, three-dimensional grain growth, which was thought to be due to inhomogeneous substrate surface and c-axis oriented grain growth of the ZnO phase, was independent on heal-treatment temperature. Highly homogeneous surface of the highly-oriented ZnO film was observed at $800^{\circ}C$. All the films exhibited a high transmittance (above 80%) in visible region except film heat treated at $1000^{\circ}C$, and showed a sharp fundamental absorption edge at about $0.38{\sim}0.40{\mu}m$. The estimated energy band gap for all the films were within the range previously reported for films and single crystal. ZnO films, consisting of densely packed grains with smooth surface morphology were obtained by heat treatment at $600^{\circ}C{\sim}800^{\circ}C$, expected to be ideal for practical application, such as transparent conductive film and optical device.

  • PDF

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF