• 제목/요약/키워드: Optical Microscopy

검색결과 1,443건 처리시간 0.029초

Structural and Optical Characteristics of High Quality ZnO Thin Films Grown on Glass Substrates Using an Ultrathin Graphite Layer

  • Park, Suk In;Heo, Jaehyuk;Baek, Hyeonjun;Jo, Janghyun;Chung, Kunook;Yi, Gyu-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.302.1-302.1
    • /
    • 2014
  • We report the growth of high quality zinc oxide (ZnO) thin films on amorphous glass substrates and their structural and optical characteristics. For the growth of ZnO films, mechanically exfoliated ultrathin graphite or graphene layers were used as an intermediate layer because ZnO does not have any heteroepitaxial relationship with the amorphous substrates, which significantly improved the crystallinity of the ZnO films. Structural and optical characteristics of the films were investigated using scanning and transmission electron microscopy, x-ray diffraction, and variable temperature photoluminescence spectroscopy. High crystallinity and excellent optical characteristics such as stimulated emission were exhibited from the high quality ZnO films grown on glass substrates.

  • PDF

광섬유센서를 이용한 복합적층판의 변형률 해석 (Strain Analysis of Composite Laminates Using Optical Fiber Sensor)

  • 우성충;최낙삼;박래영;권일범
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.111-114
    • /
    • 2004
  • Using the embedded optical fiber sensor of totally-reflected extrinsic Fabry-Perot interferometer(TR-EFPI), longitudinal strains(Ex) of the core and skin layers in glass fiber reinforced plastic(GFRP) cross-ply composite laminates have been measured. Transmission optical microscopy was employed to study the damage formation around the TR-EFPI sensor. It was observed that values of ex in the interior of the skin layer and the core layer measured by embedded TR-EFPI sensor was significantly higher than that of the specimen surface measured by strain gauges. The experimental results agreed well with those from finite element analysis on the basis of uniform stress model. Large strains in the core layer led to the occurrence of transverse cracks which drastically reduced the strain at failure of optical fiber sensor embedded in the core layer.

  • PDF

Surface Morphology of AlSb on GaAs Grown by Molecular Beam Epitaxy and Real-time Growth Monitoring by in situ Ellipsometry

  • Kim, Jun Young;Lim, Ju Young;Kim, Young Dong;Song, Jin Dong
    • Applied Science and Convergence Technology
    • /
    • 제26권6호
    • /
    • pp.214-217
    • /
    • 2017
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. We report the effect of growth temperature on structural properties of AlSb grown on GaAs substrate. In particular we studied the surface of AlSb with the growth temperature by atomic force microscopy, and concluded that optimized growth temperature of AlSb is $530^{\circ}C$. We also show the result of real-time monitoring of AlSb growth by in situ ellipsometry. The results of the structural study are good agreement with the previous reported ellipsometric data.

SNOAM에 의한 LB막의 표면모폴로지 및 광투과상 해석 (Analysis of Surface Morphology and Optical Transmission Features in LB Films by SNOAM)

  • 이승준;정상범;유승엽;신훈규;박재철;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.108-111
    • /
    • 2000
  • We will illustrate the topographical structure and optical structure of the merocyanine dye LB films obtained by the scanning near-field optical/atomic force microscopy (SNOAM). SNOAM was recognized as a powerful tool to modify the surface as well as to characterize the topography of the surface at atomic resolution, especially for optical reaction materials. SNOAM images showed that the topographical and optical structures of these films were not only depended on the chemical property but also physical property. In the continuous measurement on these dyes, the appearance of near-field optical transmission images showed a certain dependence on the kinds of dyes and the mutual mixing ratios of dyes. These experimental results suggest that there is a certain kind of interaction between these two dyes.

  • PDF

Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis

  • 신창미;류혁현;이재엽;허주회;박주현;이태민;최신호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • The zinc oxide (ZnO) material as the II-VI compound semiconductor is useful in various fields of device applications such as light-emitting diodes (LEDs), solar cells and gas sensors due to its wide direct band gap of 3.37eV and high exciton binding energy of 60meV at room temperature. In this study, the ZnO nanorods were deposited onto homogenous buffer layer/Si(100) substrates by a hydrothermal synthesis. The Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis were investigated. For the buffer layer annealing case, the annealed buffer layer surface became rougher with increasing of annealing temperature up to $750^{\circ}C$, while it was smoothed with more increasing of annealing temperature due to the evaporation of buffer layer. It was found that the roughest surface of buffer layer improved the structural and optical properties of ZnO nanorods. For the post annealing case, the hydrothermally grown ZnO nanorods were annealed with various temperatures ranging from 450 to $900^{\circ}C$. Similarly in the buffer layer annealing case, the post annealing enhanced the properties of ZnO nanorods with increasing of annealing temperature up to $750^{\circ}C$. However, it was degraded with further increasing of annealing temperature due to the violent movement of atoms and evaporation. Finally, the buffer layer annealing and post annealing treatment could efficiently improve the properties of hydrothermally grown ZnO nanorods. The morphology and structural properties of ZnO nanorods grown by the hydrothermal synthesis were measured by atomic force microscopy (AFM), field emission scanning electron microscopy (SEM), and x-ray diffraction (XRD). The optical properties were also analyzed by photoluminescence (PL) measurement.

  • PDF

R-plane Sapphire 기판에 수열합성법으로 제작된 ZnO 나노구조체의 성장 및 특성 (Hydrothermal Growth and Characterization of ZnO Nanostructures on R-plane Sapphire Substrates)

  • 조관식;김민수;임재영
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.605-611
    • /
    • 2012
  • ZnO nanostructures were grown on R-plane sapphire substrates with seed layers annealed at different temperatures ranging from 600 to $800^{\circ}C$. The properties of the ZnO nanostructures were investigated by scanning electron microscopy, high-resolution X-ray diffraction, UV-visible spectrophotometer, and photoluminescence. For the as-prepared seed layers, ZnO nanorods and ZnO nanosheets were observed. However, only ZnO nanorods were grown when the annealing temperature was above $700^{\circ}C$. The crystal qualities of the ZnO nanostructures were enhanced when the seed layers were annealed at $700^{\circ}C$. In addition, the full width at half maximum (FWHM) of near-band-edge emission (NBE) peak was decreased from 139 to 129 meV by increasing the annealing temperature to $700^{\circ}C$. However, the FWHM was slightly increased again by a further increase in the annealing temperature. Optical transmittance in the UV region was almost zero, while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanostructures was increased as the annealing temperature increased to $700^{\circ}C$. It is found that the optical properties as well as the structural properties of the rod-shaped ZnO nanostructures grown on R-plane sapphire substrates by hydrothermal method are improved when the seed layers are annealed at $700^{\circ}C$.

간섭성 반스톡스 라만 산란 현미경 후방 신호지 방사패턴에 관한 이론계산 연구 (Theoretical Calculation on Radiation Patterns of Epi-signal in CARS Microscopy)

  • 유용심;조혁
    • 한국광학회지
    • /
    • 제18권4호
    • /
    • pp.286-291
    • /
    • 2007
  • 높은 수치구경의 대물렌즈를 사용하는 간섭성 반스톡스 라만 산란 현미경(coherent anti-Stokes Raman scattering microscopy)에서 폴리스틸렌구에서 발생한 신호의 먼거리장 방사패턴에 대한 이론적 계산 연구를 수행하였다. 극초점 조건에서 입사 레이저 광의 전기장 분포를 계산하였고, CARS 신호 생성원인인 비선형 분극(헤르치안 쌍극자) 방사의 간섭성 합을 통하여 먼거리장 방사 패턴을 계산하였다. 폴리스틸렌구의 크기에 따른 후방 방사패턴을 계산하였고, 1100 nm 직경을 가진 폴리스틸렌구와 폴리스틸렌 구껍질의 방사패턴을 비교하였다. 또한, 극초점으로부터 폴리스틸렌구의 중심이 이동함에 따른 방사패턴의 변화를 보였다.

Confocal Scanning Microscopy : a High-Resolution Nondestructive Surface Profiler

  • Yoo, Hong-Ki;Lee, Seung-Woo;Kang, Dong-Kyun;Kim, Tae-Joong;Gweon, Dae-Gab;Lee, Suk-Won;Kim, Kwang-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.3-7
    • /
    • 2006
  • Confocal scanning microscopy is a measurement technique used to observe micrometer and sub-micrometer features due to its high resolution, nondestructive properties, and 3D surface profiling capabilities. The design, implementation, and performance test of a confocal scanning microscopy system are presented in this paper. A short-wavelength laser (405 nm) and an objective lens with a high numerical aperture (0.95) were used to achieve the desired high resolution, while the x- and y-axis scans were implemented using an acousto-optic deflector and galvanomirror, respectively. An objective lens with a piezo-actuator was used to scan the z-axis. A spatial resolution of less than 138 nm was achieved, along with successful 3D surface reconstructions.

Application of Three-Dimensional Light Microscopy for Thick Specimen Studies

  • Rhyu, Yeon Seung;Lee, Se Jeong;Kim, Dong Heui;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.93-99
    • /
    • 2016
  • The thickness of specimen is an important factor in microscopic researches. Thicker specimen contains more information, but it is difficult to obtain well focused image with precise details due to optical limit of conventional microscope. Recently, a microscope unit that combines improved illumination system, which allows real time three-dimensional (3D) image and automatic z-stack merging software. In this research, we evaluated the usefulness of this unit in observing thick samples; Golgi stained nervous tissue and ground prepared bone, tooth, and non-transparent small sample; zebra fish teeth. Well focused image in thick samples was obtained by processing z-stack images with Panfocal software. A clear feature of neuronal dendrite branching pattern could be taken. 3D features were clearly observed by oblique illumination. Furthermore, 3D array and shape of zebra fish teeth was clearly distinguished. A novel combination of two channel oblique illumination and z-stack imaging process increased depth of field and optimized contrast, which has a potential to be further applied in the field of neuroscience, hard tissue biology, and analysis of small organic structures such as ear ossicles and zebra fish teeth.

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu;Kwak, Jina;Jung, Yoo Jung;Kim, Young Ho;Hong, Hyun-Seok;Hwang, Byung Joon;Kwon, Seung-Hae;Kee, Yun
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.975-981
    • /
    • 2015
  • Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.